MAPiIS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

GreenSource: Repository tailored for Green Software Analysis

Rui Rua
Departamento de Informatica
Universidade of Minho
R. da Universidade, 4710-057 Braga

rui.a.rualinesctec.pt

Abstract— Energy consumption analysis and energy-aware
development have won the attention of both developers and
researchers over the past years. The interest is becoming more
notorious due to the proliferation of mobile devices, where
saving energy is a key concern.

In the last years, a considerable number of studies aiming
at analyzing the energy consumption emerged, with objectives
such as measuring/estimating the energy consumed by an appli-
cation or code block, or even detecting energy-expensive coding
patterns. However, when it comes to actually improving the
energy efficiency of an application, the amount of information
provided about source code energy consumption that can be
used by developers to reduce it in the development phase, is
still very low.

In this paper we present GreenSource, a publicly available
repository containing more than 600 Android Projects extracted
from open-source repositories. This infrastructure contains
static and dynamic metrics obtained from the execution of
stress and unit tests over the projects’ applications. The results
were obtained using a tool developed in this work context, the
AnaDroid framework. This tool uses testing frameworks and
an energy profiler to instrument, build and execute tests over
applications in a physical device, while monitoring its energy
and resources consumption/usage.

Processing each one of this projects is a time-consuming
task, due to the lack of tools capable of gather all this
information and the large size and complexity of the projects.
With this work, we intend to openly provide the resultant
metrics and metadata obtained from the process of analyzing
the projects and its execution. The queryable and minable data
provided by the GreenSource can be used for further studies
and researches, helping developers community to reason about
energy consumption in software and relate it to source code.

I. INTRODUCTION

With the advancement of the technological age, the soft-
ware engineering community has been focusing on how
software is developed and continually progressed in this
direction. Efforts in this regard have been made at vari-
ous levels, from hardware [1] level to compilers [2], pro-
gramming languages [3] or integrated development environ-
ments (IDE’s). These intended to increase the productivity
of software development, abstracting inherent development
processes, allowing developers to focus on the most essential
functional aspects of their software product.

However, since the beginning of the century we have
witnessed a revolution in the computer systems portability.
The portability factor became much valued by users, and
thereafter also for its manufacturers. Consequently, given
the limited capacity of the battery of such devices, the

MAPiS

54

optimization of energy consumption for these has proved to
be a crucial aspect for producers of these, as well as for the
developers of software for these platforms.

Accompanying the mobile market growing, the Android
ecosystem keeps evolving at an impressive pace as well.
Since this operative system can run on a wide variety
of devices, from smartphones, tablets or weareables, its
widespread usage in the last decade was significantly no-
torious. This is the most used operative system for mobile
devices, having in 2018 around 84,8% devices running its
platform[4].

Over the last few years, the interest in analyzing energy
consumption of the Android platform and respective applica-
tions has been increasing significantly. Energy-greedy mobile
apps that drain the battery of devices are perceived as being
of poor quality by users [5]. As a consequence, users are
likely to uninstall an energy-inefficient app, and sometimes
are even recommend to do so.

Due to this recent interest, in the last decade several works
in this sense appeared. These aimed at analyzing the energy
consumption in multiple ways, such as measuring/estimating
the energy consumed by an application or block of code [6],
[7], or even detecting energy expensive coding patterns [§]
or API’s [9]. In order to perform optimization in terms of
energy at software level, we face a whole new challenge,
which can only be achieved through source code improve-
ments that can take advantage of energy saving techniques.
Nonetheless, in order to identify energy-greedy code and
propose techniques/solutions to avoid it, a significant and
characterizing amount of information regarding the code
energy consumption has to be analyzed.

The versatility and continuous evolution of the Android
platform, with a constantly changing architectural and func-
tional environment, leads to the increasing challenge of
gather characterizing information about its energy and re-
sources consumption. Since this platform runs in a countless
number of devices [10], with different hardware components
and architectures, running different versions of the system,
its almost unfeasible to find solutions with satisfactory results
for all configurations.

In this paper, we present an approach to gather useful
metrics and data about the execution of portions of appli-
cations’ source code in physical devices. We reused the
GreenDroid [11] concept to instrument and monitor the
execution of source code portions, providing an extensible

MAPiIS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

framework that can be used by developers to estimate energy
consumption of application. We executed this framework
over more than 600 Android applications, extracted from
the MUSE repository'. The results of the execution of the
extracted applications was then centralized in an open repos-
itory. This infrastructure was designed to store metrics and
metadata relatively to executed code of Android applications.
The obtained information is related to the characteristic of
the executed application and respective platform and device.

To summarize, the developed work involves essentially
two main artifacts:

o The Anadroid framework: Tool that resulted from the
evolution of GreenDroid, which consisted in one of
the starting points to carry out the energy consumption
analysis of source code in Android. This framework
was conceived in order to have ability to instrument
the source code of any Android project, generate the
respective APK (Android PacKage) and monitor its
execution. The execution of the applications is done
through stress or unit tests.

GreenSource infraestructure: To demonstrate the power
of the AnaDroid framework, we executed it over hun-
dreds of Android projects. Having access to a large
number of applications and a powerful tool like the
AnaDroid , it was decided to build an infrastructure
capable of store and organize information of all exe-
cutions. As such, the GreenSource was built. It is a
repository containing data and metrics related to the
structure and performance of applications that can be
related to the energy consumption of its source code.

The information that the resultant infrastructure contains
is openly available for consultation (http://greenlab.
di.uminho.pt/greensource/). The main goal of this
work is to offer a relevant scientific contribution that can be
significant and characterizing the Android platform, being
able to be reused in later studies. In order to achieve these
objectives, we intend to continue to populate this repository
with information regarding more applications, tests and de-
vices. The contained data can be subjected to analyzes and
studies (e.g. Data Science/Machine-Learning) that can allow
to correlate factors that can have a significant impact on
energy consumption and obtain relevant conclusions about
of the applications code.

The remaining of this paper is organized as follows. In
Section 2 we introduce the main artifacts and methodologies
followed to obtain the GreenSource infrastructure and the
information contained in it. We then present the results of
the experiment in Section 3. Section 4 presents the threats
to the validity of this work. Finally, in Section 5 we present
our conclusions and future work directions.

Muse repository: https://opencatalog.darpa.mil/MUSE.
html

55

UNIX

BASED
b
o

O

Fig. 1: GreenSource high-level components

II. GREENSOURCE
A. Data provenance

In order to obtain diverse and relevant material for the
accomplishment of studies that could reach significant mag-
nitude, we needed to gather a significant number of Android
Projects. The goal was to collect projects from a wide
variety of sources in order to obtain a diverse set and whose
projects/source code was openly accessible. Excepting the
alternative of developing a tool that analyzes open-source
repositories, which identifies Android projects and extracts
that content, we reused previous works that had the same
goal.

In order so obtain such corpus of Android projects, We
took advantage of the work done during the development of
GreenDroid[11], whose goal was to extract Android projects
from the MUSE repository, an extension of the sourcerer
repository[12]. These projects were collected from other
open repositories and were developed in Java, the current
leading development language for the Android platform.

Among the thousands of projects contained in the repos-
itory, we selected those that we could identify as Android
projects, by executing queries on the repository database. Of
all identified projects, we selected a subset that we identified
as functional (i.e. compiled, built and executed without
errors). Excluding all the problematic apps, we obtained a set
containing more than 600 functional projects, which allow
us to build applications that can be installed and run on
Android devices. This set represents the starting point for
the creation of the repository, already having a considerable
size and minimally representative, and can be increased in
future updates.

B. AnaDroid Framework

The AnaDroid tool was developed to offer a generic way
of integrating the ability to measure the energy consumption
of an Android application. This tool can be used during its
development process, as well as to automate the procedure of
executing it over a large set of applications. This framework
comes as an evolution of the GreenDroid framework [11],
making it more accurate, current and complete. Its work-
flow is quite similar, from the instrumentation phase to the
test execution phase. Several changes were made to how
GreenDroid performed the instrumentation, exercised and
analyzed the code and energy consumption of applications.
Its concept has been extended to be able to interact with more
testing frameworks, as well as new energy profilers, such as
Trepn Profiler. With the inclusion of these new tools and
with changes made to its workflow and how it analyzed the

MAPiIS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

Instrument

APP
project

Calculate static metrics

Include TrepnLib in project
Evaluate AP usage iy

Fig. 2: AnaDroid Workflow

application code statically, it was possible to extract more
information that can be associated and justify the energy
performance of the applications.

The AnaDroid workflow is showed in the figure 2. It starts
by instrumenting an Android project, both at the source code
and building scripts level. This step is needed, in order to
delimit the code execution interval and make calls to the
energy profiler. In addition, during the instrumentation, it
also collects static metrics and metadata about application
methods and classes (Some of them are present in table ??.
Te next steps consists in generate the APK and install it
on a physical device, using the ADB tool (Android Debug
Bridge), allowing to perform and manage these tasks from
the development machine. According to the intended testing
framework, the tests are then executed on the device, the
resultant data is collected and the results for each of the tests
are generated. Before and after each test run, information
about the resources (CPU, free memory and number of
running processes) and status of the device which may
interfere with the tests results are collected . In addition, in
the final stage (Analyze phase), the AnaDroid can analyze
and process the results obtained for each test executed. Then,
it can send the obtained metrics and data to the GreenSource
backend, in order to centralize results and contribute to the
growth of knowledge regarding the power consumption and
features of Android code.

C. TrepnLib and Trepn

Trepn Profiler? is a software-based artifact developed by
Qualcomm that works on devices with Snapdragon chipset-
based Android devices. It is a diagnostic tool designed for
expert consumers, such as Android developers. It can be
used to profile hardware usage (like GPS, WiFi and others),
resources usage (memory, CPU) and power consumption of
the system or standalone Android applications. This tool
doesn’t need external (hardware) tools, as it gets its power
readings from the Power Management IC (PMIC) and the
battery fuel gauge software.

Trepn can be used as an standalone application, or as a
service (an unix-like daemon in Android), which allows invo-
cations via source code or from the ADB tool. This versatility
makes this profiler easy to integrate in Android-based tools
and applications, in purpose of measure and profile portions
or entire applications. It provides the capability of pin data
points (application states) while monitoring, which can be

’https://play.google.com/store/apps/details?id=
com.quicinc.trepn

56

used to log and mark specific events during the profiling
timeline.

Given the capability of Trepn of being invoked via (Java)
source code, we had to find a way to easily integrate his calls
in Android Applications, abstracting the calls to the Trepn
Service. We developed a Android Library (TrepnLib) for this
purpose, providing an API that allows to isolate and profile
portions/code blocks (like methods,loops or Activity’s lifecy-
cle) of any Java class present in the application source code.
Instrumenting the source code with the API provided by the
TrepnLib, it is possible to estimate the power consumption
and profile the isolated block, as well log other relevant
events, like the start/end of methods, identify recursive calls,
and others. To provide all this capabilities, we designed the
TrepnLib taking into account his use cases. We reached the
conclusion that the most common blocks/portions of code
that are more relevant to isolate in terms of debugging and
development process were methods and (unit) test cases. The
capability of estimate power consumption of Java code at
instruction/line level is not reliable using Trepn Profiler, since
his sample rate is never lower than 100 ms, difficulting the
task of associate samples at an specific rate with executions
of instructions that take only a few milliseconds to run.

Furthermore, we provided functions to start and stop the
profiling process, given the type of instrumentation (method
or test oriented), that start and stop the Trepn Service, as
well creates auxiliary files that are used to manage several
runs,states and contexts. Methods to trace usage of methods
and log states/events are also provided.

D. GreenSource Backend

In order to give a greater purpose to the Anadroid frame-
work, it has been integrated into the GreenSource repository.
The main function of GreenSource’s backend is to store
and manage the information gathered through AnaDroid tool
executions over Android projects. As such, the GreenSource
contains a database within, having the function of providing
an uniform way of communicating with it. In this way,
mechanisms can be put in place that eases the processes of
management, validation and manipulation of data at a higher
architectural level, obtaining an abstraction level independent
of the database engine used. The communication interface
chosen consists in a RESTful API, which enables a uniform
form of communication that provides the ability to consult,
insert, change and delete data through HTTP requests. The
database has been carefully designed to be expandable for
future refinements and expansions of the AnaDroid tool. This
database is a relational database and its schema consists
of 21 tables, which refer to the elements that compose the
application, as well as metadata and metrics related to the
execution and analysis of the ones made on them.

The way the database was structured and developed,
allows it to accompany the expansion of Anadroid, being
easily extensible to support different test frameworks, devices
and energy profilers.

MAPiIS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

III. RESULTS

This section demonstrates some results obtained with the
help of the AnaDroid tool, which were stored in the database
of the GreenSource backend. Several types of results were
selected for the execution of application tests with the
Ul/Application Exerciser Monkey test framework. These
results allow to compare tests, applications and portions of
these, as well its executions.

The process of running AnaDroid on a wide range of
applications is an extremely costly process over time. This
time is influenced by both the performance of the develop-
ment machine and the Android device on which the tests are
performed. Until the writing of this paper, this framework
was successfully executed over a total of 352 Android
projects. The features and specifications of the device in
which the applications and tests were executed are described
in table I.

Feature Details

Chipset Snapdragon 400 Qualcomm MSM8226
CPU 1.2 GHz Quad Core

GPU Adreno 305

RAM 1 GB

Mem 8 GB

Screen IPS LCD 720 x 1280 pixel 16M colors
Wifi 802.11b/g/n

Bluetooth 4.0 com A2DP/LE

GPS A-GPS/GLONASS

Battery 2070 mAh

TABLE I: Android device specifications

We tried to run tests until we reached a relevant method
coverage, approximately equal to or greater than 60%. These
were done using the framework UI Application Exerciser
Monkey, since its tests reach much higher values of method
coverage than those obtained with the JUnit tests present
in some projects. In order to reach this level of method
coverage, 20 equal tests (generated from the same seeds)
were carried out for each one of these applications. If this
level of method coverage was not reached after 20 tests, the
process would continue for more 30 tests. These tests were
executed using the same seeds, in order to generate the same
sequence of events for every application. The workflow of
the test execution is represented in figure 3

In order to prevent the pseudo-random events generated by
the Exerciser Monkey from turning on/off system resources
or invoking other applications, some precautions had to be
taken. The first consisted of using an auxiliary application
called Simiasque3, which hides status bar under an overlay
mask, preventing monkey tests from clicking it. The second
was to prevent Exerciser Monkey from generating system-
events (pressing the Home, Back, Start Call, End Call, or
Volume buttons) i to prevent generated events from being
made outside the running application interface or prevent
the phone from rebooting.

We then repeated this process for the 352 applications
and analyzed the obtained results. By obtaining this type of

Jhttps://github.com/Orange-OpenSource/simiasque

57

ANDROID
DEVICE
|
1

UNIX ENV

| 1: Grant Permissions

2: Start Profiling

3: Get Device State

4: Run Test

5: Get Device State

6: Stop Profiling

7: Export data

8: Force App Stop

9: Clean App Cache

9.1: Profiling Data

—————1

T
|
Fig. 3: Test Execution workflow

results for a large set of applications, it is possible to compare
applications for each one of the obtained metrics, in order
to be able to correlate them with the (energy) performance
of these. To illustrate examples of the comparisons and
conclusions that can be made (in the future, with much more
confidence, when a more significant number of different
applications were analyzed), we have selected the following
applications:

¢ Android DisplayingBitmaps: due to being the applica-
tion with more methods invoked during the execution
of the tests.

PkTest*: Application that has achieved considerable
test runtime and uses above average amount of sen-
sors/hardware usage.

Material Library: It obtained a total execution time of
tests quite similar to the PkTest application.

The nature of the results allow to visualize and compare
applications according to the executed tests. For the Android
DisplayingBitmaps, the table II shows some of the results
obtained for each executed test.

Test Number Consumption Time (ms) an’f/:;]ge Avg I\(/[]\e/[wl;)llsage Avg C;}:/:; Load | Avg (;E’yg Load
89160419 74.919 33515 69.69 836987.535 0.88 61.789
48.04278 21551 40.40 843599.578 5912 53.960
435986 90.456 24204 69.69 822303.591 7.407 56.781
40201 71.834 29017 69.69 825611.297 4.766 56.546
16 76.4522 27988 69.19 808640.368 4.689 54.929
231251 51.927 18337 69.69 820401.516 3.446 50.508
927139 58.230 26049 69.69 815680.168 5.056 59.879
123456789 60.152 25338 69.69 826982.464 5.305 55934
256773292 59.510 23190 69.69 827095.791 5.625 54.002
330101 98.010 35165 69.69 827265.815 5.118 61.424
12131145 50.336 24695 69.69 833746.1977 1.9199 53.0411
1986 69.578 30640 63.63 811824.113 3.877 56.746
2018 49.380 22700 69.69 814691.094 2.554 52.995
1893 60.794 29015 62.12 847369.156 3.937 57.120
8913489 79.76 28309 69.69 830391.543 6.125 55.557
72929123 58.72 25635 69.69 821123.176 3.570 54.953
236236 68.39 25603 72.22 838037.96 4.640 56.984
37666 39.376 19059 69.69 827088.545 5.640 53.141
8894018411 57.80 24832 69.69 820214.612 3.927 53.182
5637 53.105 27954 69.69 820144.307 5.6738 56.569
Total coverage 72.22
TABLE II: Some test results obtained for Android Display-

ingBitmaps app

For instance, in figure 4 we can conclude that the PkTest

“https://github.com/zubietaroberto/
AndroidKeyStoreTest

MAPiIS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

application has a lower (but similar) execution time perfor-
mance than the Material Library application. However, it
has a higher energy consumption, even invoking only 6280
methods during the execution of the test, well below the
311,236 invoked by the latter. The hardware usage values
(CPU, GPU, Memory) are higher for PkTest, and for GPU,
the average usage percentage value (5.44 %) of this feature is
777.24% higher than the registered for the Material Library
application. In this we can conclude that the use of this
type of hardware also can have a considerable impact on
the energy performance of an application.

PkTest vs Material Library (%)

AvgGPU (p.test) I 7 7, 14

Avg MEM (p. test) 100,95

AvgCPU (p. test) 2 111,53

#Methods 2,01

. 93,34

Total Time

Total Energy [N 125,14

0 50 100150 200250300 350400 450 500 550 600 650 700 750 800

Fig. 4: Comparison between PkTest and Material Library

IV. THREATS TO VALIDITY

Measuring the energy consumption of a mobile device
is complex [13]. This is mostly due to the fact that it is
quite difficult to fully isolate the code or application under
measurement.

Today’s operating systems, such as Android, have the abil-
ity to run multiple processes and applications simultaneously.
Due to the difficulty of ensuring that during the execution
of each test, only the intended application is running on the
device and having an impact on its consumption, we register
the state of the device before and after each test Following
this approach, information about the status of the device is
collected, which may interfere with the performance of the
tests, like the number of processes running, percentage of
CPU used and memory available.

Moreover, we executed the application in a factory-reseted
device, with the lowest brightness level, to ensure the energy
consumed by the display was as low as possible. We didn’t
considered testing in a root device, since we wanted to
emulate a more realistic environment of execution. However,
in order to avoid interferences, we did not provide Google
account credentials, in order to avoid minimize the compu-
tations of Google services, like checking for updates.

Finding an adequate tool for energy profiling for the
Android environment was also a challenge. The Android
platform still lacks tools that allow developers to quickly and
reliably monitor power consumption, as well locate energy
hotspots in their code. Trepn is an accurate tool[14], capable
of profile hardware usage (like GPS, WiFi and others),
resources usage (memory, CPU) and power consumption of
the system or even standalone Android applications, gets

58

its power readings from the power management Integrated
Circuit (PMIC) and the battery fuel gauge software. The
main limitation of this profiler is that only gets accurate
battery power readings from chipsets developed by Qual-
comm, and the sampling rate can’t be adjusted to less
than 100 ms. However, we consider that is still the best
free software-based alternative for this purpose, since this
company dominates the smartphone SoC (System on a Chip)
market due to date [15]. Another issue that we needed to
solve was finding an approach to properly compare metrics
applications of different types and domains. In order to avoid
labeling and compare applications according to its domain
and functionalities, we decided to exercise the User Interface
of every applications and compare them by the respective
obtained consumption. The tests were executed with the
Application Exerciser Monkey, that allows to simulate user
interaction and I/O events. In order to reach a relevant
amount of method coverage to fairly compare executions,
20 equal tests (generated from the same seeds) were carried
out for each one of the applications. If the defined level of
method coverage was not reached after 20 tests, the process
would continue for 30 more tests. These tests were executed
using the same seeds, in order to generate the same sequence
of events for every application.

V. CONCLUSIONS

The main contributions of this work go from a tool capable
of gathering relevant metrics and metadata to justify the
consumption of code blocks of Android applications, to the
development of an infrastructure capable of automating and
gathering executions of this tool. We successfully imple-
mented our methodology, resulting in a global infrastructure
containing so far more than 600 Android applications and
results from over 6,000 tests executed over some of these.

We were able to extend the GreenDroid framework to be
capable of gather more information about the source code
structure and become more expandable and precise. With the
capability of easily integrate new testing frameworks and new
energy profilers, like the Trepn Profiler, it became a tool that
can be used for generically process Android Projects. It can
be integrated in the testing phase of the development lifecycle
of Android applications, helping developers to observe the
energy and resources consumption, relating it to metrics
obtained from dynamic and static analysis.

As a form of providing and share the results obtained,
as well to prove and take advantage of the power of the
AnaDroid, an open repository was developed. It contains
hundreds of Android applications and respective results and
metrics obtained with the execution of them (or portions) in a
physical device. By agglomerating a high number of results,
we pretend to obtain a set of information characterizing the
Android development paradigm. This will allow to relate
consumption with levels resource usage, to energetically
compare different applications and devices and to obtain
quality metrics of tests and software. In addition, it is hoped
that the information retrieved from this repository may be
(re)used in further works and researches.

MAPiIS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

(1]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

J. W. Yoo and K. H. Park, “A cooperative clustering protocol for
energy saving of mobile devices with wlan and bluetooth interfaces,”
IEEE Transactions on Mobile Computing, vol. 10, no. 4, pp. 491-504,
April 2011.

M. Pedram, “Power minimization in ic design: Principles and
applications,” ACM Trans. Des. Autom. Electron. Syst., vol. 1, no. 1,
pp. 3-56, Jan. 1996. [Online]. Available: http://doi.acm.org/10.1145/
225871.225877

WOLFHPC ’14: Proceedings of the Fourth International Workshop
on Domain-Specific Languages and High-Level Frameworks for High
Performance Computing. Piscataway, NJ, USA: IEEE Press, 2014.
(2018) Smartphone market share. [Online]. Available: https://www.
idc.com/promo/smartphone- market- share/os

(2018) Top frustrations that lead to bad mobile app reviews. [Online].
Available: https://bit.ly/2QLoDTA

J. C. J. P. F. Tiago Car¢do, Marco Couto and J. Saraiva, “Detecting
anomalous energy consumption in android applications,” 2014.

D. D. Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. D. Lucia, “Petra: A software-based tool for estimating the energy
profile of android applications,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), May 2017,
pp. 3-6.

M. Linares-Véasquez, G. Bavota, C. Bernal-Cardenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: An empirical study,” in Proceedings of
the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 2-11. [Online].
Available: http://doi.acm.org/10.1145/2597073.2597085

A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-
grained power modeling for smartphones using system call tracing,”
in Proceedings of the Sixth Conference on Computer Systems, ser.
EuroSys ’11. New York, NY, USA: ACM, 2011, pp. 153-168.
[Online]. Available: http://doi.acm.org/10.1145/1966445.1966460
(2018) There are now more than 24,000 different android devices.
[Online]. Available: https://bit.ly/2NNfPHQ

M. Couto, J. Cunha, J. P. Fernandes, R. Pereira, and J. Saraiva,
“Greendroid: A tool for analysing power consumption in the android
ecosystem,” in 2015 IEEE 13th International Scientific Conference on
Informatics, Nov 2015, pp. 73-78.

J. Ossher, S. Bajracharya, E. Linstead, P. Baldi, and C. Lopes,
“Sourcererdb: An aggregated repository of statically analyzed and
cross-linked open source java projects,” in 2009 6th IEEE International
Working Conference on Mining Software Repositories, May 2009, pp.
183-186.

A. Banerjee and A. Roychoudhury, “Future of mobile software for
smartphones and drones: Energy and performance,” in Proceedings of
the 4th International Conference on Mobile Software Engineering and
Systems. 1EEE Press, 2017, pp. 1-12.

A. R. Bakker, “Comparing energy profilers for android,” in Pro-
ceedings of 21st Twente student conference on IT, Enschede, The
Netherlands, 2014.

(2018) Global smartphone system-on-chip (soc) revenue share by
vendor. [Online]. Available: https://bit.ly/2yt4jMe

59

MAPiIS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

APPENDIX
Class Method Times invoked | CC | LoC | AndroidAPIs | N
FlagsActivity onCreate 198 2 6 2 1
BaseFlagFragment validate 1071 6 18 0 0
VerifyPhoneFragment onCreateView 198 1 4 5 3
CustomPhoneNumberFormattingTextWatcher | hasSeparator 781 4 8 0 3
BaseFlagFragment onPostExecute 135 0 1 0 0
FlagsActivity onOptionsItemSelected | 19 3 6 4 1
BaseFlagFragment onPhoneChanged 715 0 1 0 0
BaseFlagFragment initCodes 198 1 2 1 1
CustomPhoneNumberFormattingTextWatcher | reformat 715 6 24 0 2
CountryAdapter getView 4224 2 8 7 3
VerifyPhoneFragment onActivityCreated 198 1 3 1 1
Country getCountryCode 87757 1 2 0 0
CustomPhoneNumberFormattingTextWatcher | stopFormatting 67 1 3 0 0
CustomPhoneNumberFormattingTextWatcher | onTextChanged 2155 4 7 0 4
BaseFlagFragment initUI 198 1 38 16 1
BaseFlagFragment hideKeyboard 1071 1 3 9 1
Country getCountryCodeStr 44 1 2 0 0
FlagsActivity onCreateOptionsMenu | 198 1 3 1 1
BaseFlagFragment onltemSelected 44 0 1 0 0
Country getPriority 61 1 2 0 0
BaseFlagFragment doInBackground 198 0 1 0 0
CustomPhoneNumberFormattingTextWatcher | afterTextChanged 2155 11 | 28 10 1
CustomPhoneNumberFormattingTextWatcher | beforeTextChanged 2155 4 7 0 4
Country getResld 4177 1 2 0 0
CustomPhoneNumberFormattingTextWatcher | getFormattedNumber 2700 1 2 0 2
VerifyPhoneFragment send 1071 3 10 4 0

TABLE III: Static metrics obtained for each invoked method during a test.

Metric Unit Description
Consumption J Test or method the total consumption.
Time ms | Test or method run time.
Method Coverage % For test-driven instrumentation, coverage at the method level is shown.
Wifi 0-1 | If Wifi was used during the execution of the monitored block.
Mobile Data 0-1 | If mobile data was used during the execution of the monitored block.
Screen State 0-1 | If there was interaction with the screen.

Battery Charging 0-1 | If the device was charging during execution.
Avg RSSI Level dBm | average level of RSSI obtained.

Avg Memory Usage B Arithmetic mean of memory consumed.

Top Memory Usage B Peak of memory consumed.

Bluetooth 0-1 | If Bluetooth was used during the monitored block execution.
Avg GPU Load % Average percentage of GPU usage.
Avg CPU Load % Average percentage of CPU utilization.
Top CPU Load % Max percentage of CPU utilization.
GPS 0-1 | If GPS was used during the execution of the monitored block.

TABLE IV: All dynamic metrics obtained for each test.

60

