
Techniques for Improving the Efficiency of
Functional Programs

Francisco Ribeiro
HASLab/INESC TEC
University of Minho

Braga, Portugal
francisco.j.ribeiro@inesctec.pt

Abstract—Combining different programs or code fragments is
a natural way to build larger programs. This allows programmers
to better separate a complex problem into simple parts. Further-
more, by writing programs in a modular way, we increase code
reusability.

However, these simple parts need to be connected somehow.
These connections are done via intermediate structures that
communicate results between the different components.

This review paper compiles different techniques used to
remove intermediate structures and multiple traversals from
programs written in functional languages.

Index Terms—functional programming, deforestation, pro-
gram fusion, circular programs, lazy evaluation

I. INTRODUCTION

Over the last several years, programming languages have
evolved in order to provide powerful abstractions to program-
mers. Examples of such abstractions are models that represent
code abstractions, powerful type systems and recursion pat-
terns allowing the definition of functions that abstract the data
type they traverse.

Examples of such recursion patterns are higher-order func-
tions like map and filter. Composing operations like these ones
makes it possible to express long, and sometimes complex,
sequences of instructions with little effort.

However, if these mechanisms are not tuned appropriately,
they may lead to efficiency problems, either by doing more
traversals than necessary or by creating intermediate data
structures. For example, the following concise Haskell func-
tion all,

a l l p xs = and (map p xs)

checks if all elements of a list xs satisfy a given predicate p.
As we can see, it is expressed as a composition of functions
and (conjunction of a list of booleans) and map. The and
function is a fold on lists and, as a result, all is the
composition of two higher-order functions.

a l l p xs = f o l d l (&&) True (map p xs)

In this definition, an intermediate list is created to commu-
nicate the results from one function to another. However, this
program can be rewritten in a way which does not make use
of an intermediate list.

a l l ’ p xs = h True xs
where

h b [] = b
h b (x : xs) = h (b && p x) xs

Modifying the program’s code in order to overcome these
issues has the drawback of compromising readability and
conciseness.

Furthermore, one does not wish to write programs in this
style and, instead, prefers to use a more compositional style
such as the first version of all provided that there are no
performance penalties.

In addition, a more efficient implementation may not nec-
essarily be the most natural solution to a problem, leading to
increased difficulty during development and maintenance [1],
[2].

In essence, programmers wish to write programs in the style
they are most familiar with, not necessarily the most efficient
one, and have them perform the best way possible. They want
the best of both worlds.

Therefore, there’s a need for techniques that automatically
perform these kinds of optimizations automatically.

The remainder of this paper is structured in the following
way: Sections II and III briefly describe lazy evaluation and
deforestation, respectively. These two concepts are important
to understand the basis of the techniques that will be explained
subsequently. Sections IV, V, VI and VII describe specific
fusion techniques used to optimize programs written in a
functional style. In fact, these techniques are well known to the
functional programming community and constitute key ideas
behind important optimizations included in many compilers.
Section VIII concludes the paper.

II. LAZY EVALUATION

As stated previously, intermediate lists connect the different
parts that assemble a program. Therefore, with strict evalua-
tion, a lot of intermediate structures are allocated along the
way which do not take part in the final result [3], [4]. The
problem with the memory usage of these structures can be
overcome with lazy evaluation. This way, because elements
are generated as they are needed, there is no requirement for
loading the entirety of the intermediate lists.

However, even under this mechanism, each list element still
has to be allocated, checked and de-allocated [3].

MAPiS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

MAPiS 47

Therefore, lazy evaluation in itself is not enough to over-
come all the disadvantages introduced by the use of interme-
diate lists.

As such, in order to address this issue, several techniques
have been developed throughout the years with the aim of
completely eliminating the creation of these intermediate
structures.

III. DEFORESTATION

Deforestation is a technique allowing for the elimination of
intermediate structures which are created and consumed soon
afterward. Although the term may be used as a synonym to
”fusion” in general, it is generally used in order to refer to
Philip Wadler’s pioneer work [3], in which the author coins
the term.

One of the first deforestation algorithms was presented by
Philip Wadler [3] and, although it removed intermediate data
structures, it had some disadvantages, as Gill et al. [2] state.

The major drawback of this kind of approach to the elimi-
nation of intermediate structures is the restriction imposed on
the algorithm inputs. In his paper, Wadler presents what he
calls a treeless form for defining functions which do not use
any internal intermediate structures. The algorithm developed
transforms a program composed by functions defined in tree-
less form into a single function, also defined in treeless form.
As one can see, this is where one of the main disadvantages
of this technique is evident. By limiting its application to
functions defined in a restrictive form, the algorithm has a
restricted range of inputs to operate on.

This places boundaries on the style of programming allowed
to programmers, compromising code readability and concise-
ness.

A technique allowing the elimination of intermediate data
structures, and thus creating a more efficient version, without
sacrificing code clarity was needed.

IV. SHORT-CUT FUSION

Gill et al. [2] present a transformation technique to create
more efficient versions of programs through the elimination
of intermediate lists. The core idea behind this deforestation
technique are the algebraic transformations performed on some
functions.

With these algebraic transformations, the authors show it
is possible to standardize the way lists are consumed and
produced. Furthermore, this algorithm allows every program
as input.

In Haskell, one could define the well known list data type
as:

data L i s t a = N i l | Cons a (L i s t a)

foldr is a function which behaviour consists of processing
a list with an operator and returning the value it constructed
along the way (accumulated in an initial value).

This systematic consumption of a list can be thought of
as replacing every occurrence of Cons with the provided
operator and the Nil instance with the initial value.

Therefore, many functions that consume lists in a constant
way like the one just described can be expressed in terms of
foldr. That is because this higher-order function encloses
that kind of systematic consumption of a list.

Some example implementations of pre-defined functions
resorting to foldr are:

map f xs = f o l d r (\ a b −> f a : b) [] xs

f i l t e r f xs = f o l d r (\ a b −> i f f a
then a : b
e l s e b)

[] xs

However, this standardization of list consumption is not
enough to achieve the desired program transformation, as the
following example demonstrates.

Supposing a composition of functions like:

sum (map f l s)

where map applies function f to each element of ls and sum
performs the addition of every element in the list.

One could modify this program and have:

f o l d r (+) 0 (f o l d r ((:) . f) [] l s)

where foldr is a higher-order function which consumes a
recursive data structure (in this case, a list) by applying a given
combining function in a systematic way to all the constituent
parts, building a return value in the end.

But there isn’t a rule that simplifies occurrences of foldr/-
foldr. A workaround for this, could be rewriting these kinds of
programs in a more specific way, and have the above example
transformed in:

f o l d r ((+) . f) 0 l s

The problem with this approach is that it is not very general.
More precisely, it is very difficult to be sure we have sufficient
rules. When another combination of functions is encountered,
a new rule would need to be written so that that particular
case would get simplified.

In the example used to illustrate this, the foldr on the
outside had no way to know how the foldr on the inside
was producing its result list. As such, we also need a way to
standardize list production.

The abstraction described for list consumption consists in
the replacement of every cons with a function and the nil
at the end with a given value. And foldr encapsulates this
behaviour by receiving a function f and an initial value acc.

Therefore, if list production is abstracted in terms of cons
and nil, it is possible to obtain foldr’s effect if this list-
producing abstraction is applied to f and acc.

As such, a function build can be defined like:

b u i l d g = g (:) []

Following the line of thought just described, we come up
with the foldr/build rule, which can be expressed as:

MAPiS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

48

f o l d r f acc (b u i l d g) = g f acc

As an example, one can consider the upto function which,
given two numbers, produces a list that starts from the first
one and continues until the second one.

In a very straightforward way, one could define this function
as:

up to x y = i f x>y then []
e l s e x : up to (x +1) y

But, as stated before, we can try to abstract the production
of the list in terms of cons and nil, and thus getting the
following definition:

upto ’ x y =
\ cons n i l →

i f x>y then n i l
e l s e cons x (upto ’ (x +1) y

cons n i l)

Now, the function upto would be written like:

up to x y = b u i l d (upto ’ x y)

Deforestation is now possible if the list is produced using
build and consumed using foldr:

mul (up to x y)
= foldr (*) 1 (build (upto ’ x y))
= upto ’ x y (*) 1

Applying the foldr/build rule (key elements highlighted
inside red rectangles1) allows us to obtain a reduced form
of the function mul, where no intermediate list is produced,
which confirms the effect of deforestation.

V. CIRCULAR PROGRAMS

Algorithms that perform multiple traversals on the same
data structure can be expressed as a single traversal function
through a technique called Circular Program Calculation.

This kind of approach, first explored by Bird [5], highlights
the importance of the lazy evaluation mechanism in functional
languages like Haskell. In fact, defining circular programs in
this way only works because of lazy evaluation. A circular
definition has the consequence of creating a function call
containing an argument that is, simultaneously, a result of
that same call. Under a strict evaluation mechanism, this can
be a problem as an infinite cycle is created because values
are demanded before they can be calculated, leading to non-
termination.

On the other hand, lazy evaluation allows for the compu-
tation of such circular structures. With this strategy, the right
evaluation order of the expression is determined at runtime.
More specifically, only the elements of the expression to be
computed that are necessary to continue are expanded.

Although circular programs avoid unnecessary multiple
traversals, they are not necessarily more efficient than their
more straightforward counterparts [6] and are even more

1Colours assumed to be available

difficult to write. In fact, even more experienced programmers
find it hard to understand programs written in such a way. In
his paper, Bird proposes deriving these circular programs from
their less efficient (in terms of number of traversals), but more
natural, equivalent solutions.

The example he uses is the function repmin, which has
become a traditional example for being simple and a good
assistant for the explanation of this particular technique.

The problem at hand is going to be the replacement of every
leaf value in a tree with the original minimum value of the
tree.

First of all, we must define a datatype for the tree. After
that, we need a function replace and a function tmin to
swap the tree’s leaves for a given value and to calculate the
minimum value of a tree, respectively.

With that, we can easily come up with a natural way of
expressing the problem, which is implemented by the function
transform.

data L e a f T r e e = Leaf I n t
| Fork (LeafTree , L e a f T r e e)

tmin : : L e a f T r e e → I n t
tmin (Leaf n) = n
tmin (Fork (l , r)) = min (tmin l) (tmin r)

r e p l a c e : : (LeafTree , I n t) → L e a f T r e e
r e p l a c e (Leaf , m) = Leaf m
r e p l a c e (Fork (l , r) , m)

= Fork (r e p l a c e (l , m) ,
r e p l a c e (r , m))

t r a n s f o r m : : L e a f T r e e → L e a f T r e e
t r a n s f o r m t = r e p l a c e (t , tmin t)

After having a straightforward solution to the problem, one
can start applying Bird’s proposed technique.

The first step consists of tupling. The functions tmin and
replace both have a similar recursive pattern and operate
on the same data structure. Therefore, a function repmin can
be created by combining the results from the two previous
functions in a tuple.

repmin (t , m) = (r e p l a c e (t , m) , tmin t)

Furthermore, a recursive definition of this function can be
created, in which two cases need to be considered:

repmin (Leaf n , m)
= (r e p l a c e (Leaf n , m) , tmin (Leaf n))
= (Leaf m, n)

repmin (Fork (l , r) , m)
= (r e p l a c e (Fork (l , r) , m) ,

tmin (Fork (l , r)))
= (Fork (r e p l a c e (l , m) , r e p l a c e (r , m)) ,

min (tmin l) (tmin r))
= (Fork (l ’ , r ’) , min n1 n2)

MAPiS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

49

where (l ’ , n1) = repmin (l , m)
(r ’ , n2) = repmin (r , m)

The final step is where circular programming is used in
order to put together the two elements forming the result of
repmin.

Highlighted inside blue rectangles is the presence of circu-
larity; m is being used simultaneously as an argument and a
result of the same call.

t r a n s f o r m : : L e a f T r e e → L e a f T r e e
t r a n s f o r m t = n t

where (n t , m) = repmin (t , m)

However, this method for deriving circular programs
presents a drawback.

Although it allows the derivation of a circular program from
a more natural and intuitive equivalent, removing the burden
of having to come up with such a complicated implementation
and creating a circular alternative which makes less traversals
on the data structure, this technique does not guarantee termi-
nation. Fernandes et al. developed a different technique based
on short-cut fusion for deriving circular programs [7]. Circular
programs have also been the subject of study in other research
works [8]–[11].

VI. STREAM FUSION

The work by Coutts et al. [1] in Stream Fusion consists of an
automatic deforestation system that takes a different approach
compared to more traditional short-cut fusion systems.

The approach taken by [2] with the foldr/build rule is to
fuse functions that work directly over the original structure of
the data, that is, lists.

In Stream Fusion, the operations over the original list
structure are transformed in order to, instead, work over the
co-structure of the list.

As Coutts et al. [1] state, the natural operation over a list is
a fold, while on the other hand, the natural operation over a
stream is an unfold. Therefore, a list’s co-structure is a stream.

The Stream datatype encloses that unfolding behaviour. In
order to achieve this, it wraps an initial state and a stepper
function which specifies how elements are produced from the
stream’s state.

data Stream a
= ∃s . S t ream (s → St ep a s) s

The stepper function produces a Step element, which
permits three possibilities:

d a t a S t e p a s = Done
| Y i e l d a s
| Skip s

The Step datatype allows the co-structure to be non-
recursive, thanks to the Skip data constructor. This is the
key point of the stream fusion system. The Skip constructor
is what allows the production of a new state without yielding
a particular element and this is a crucial point as it permits
every stepper function to be non-recursive.

The Done and Yield alternatives are quite simple as
they pinpoint the end of a stream and carry an actual element
together with a reference to the rest of the stream’s state,
respectively.

In order to convert list structures to streams and vice-versa,
two functions are needed.

s t r e a m : : [a] → Stream a
s t r e a m xs0 = Stream next xs0

where
next [] = Done
next (x : xs) = Y i e l d x xs

u n s t r e a m : : St ream a → [a]
u n s t r e a m (St ream n e x t 0 s0) = u n f o l d s0

where
u n f o l d s = c ase n e x t 0 s of

Done → []
Sk ip s ’ → u n f o l d s ’
Y i e l d x s ’ → x : u n f o l d s ’

The function stream creates a Stream with:
• a stepper function next which is non-recursive and

yields each element of the stream as it unfolds;
• a state, which consists of the list itself.
On the other hand, the function unstream creates a list

by unfolding the given stream, repeatedly calling the stream’s
stepper function.

Implementing functions to perform operations over streams
is quite simple. The function intended has to define the
particular stepper function for the stream it is going to return as
a result. Considering the simple and well known map example
operating on lists, one would define its stream counterpart as:

maps : : (a → b) → Stream a → Stream b
maps f (S t ream n e x t 0 s0) = Stream next s0

where
next s = c ase n e x t 0 s of

Done → Done
Skip s ’ → Skip s ’
Y i e l d x s ’ → Y i e l d (f x) s ’

What maps does here is define a stepper function that
applies the function given as a parameter of maps to every
yielded element of the stream.

A very simple but important case where one can see the
effect of the stream fusion approach is the function filters.
Its implementation allows us to observe the true impact of this
technique.

f i l t e r s : : (a → Bool) → Stream a → Stream a
f i l t e r s p (St ream n e x t 0 s0) = St ream next s0

where
next s = c ase n e x t 0 s of

Done → Done
Skip s ’ → Skip s ’
Y i e l d x s ’ | p x → Y i e l d x s ’

| o t h e r w i s e → Skip s ’

MAPiS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

50

The only way that the function filters is non-recursive
is because of Skip. This constructor, when put in place of
the elements that should be removed from the stream, allows
us to avoid the recursion otherwise necessary to process every
stream element in order to find out which ones satisfy the
given predicate.

More precisely, in the last line of the above implementation,
Skip is introduced whenever an element does not pass the
predicate’s test.

This way, code can be better optimized by general purpose
compiler optimizations.

In order to use the stream fusion approach on lists, one has
to convert lists to streams and back again. This way, functions
from the Stream setting (like the previous maps and filters

examples) can be applied, as they are intended to operate on
streams. This is accomplished by using functions stream and
unstream. As an example, function map on lists is specified
in the following way:

map : : (a → b) → [a] → [b]
map f = u n s t r e a m . maps f . s t r e a m

This way, each function has to construct a Stream, perform
its task and then build a list. Doing this for every function in
a stream pipeline would be very inefficient. Considering the
example of composing a filters and a maps, the following
is obtained:

f i l t e r p . map g =
u n s t r e a m . f i l t e r s p . s t r e a m .
u n s t r e a m . maps g . s t r e a m

Communicating the results from maps to filters builds
an intermediate list (generated by unstream), which gets
consumed right away (stream). But there is a chance to
eliminate this intermediate list.
stream . unstream is the identity on streams and, as

a result, it can be removed. Formalizing, this originates the
stream/unstream fusion rule:

∀s . s t r e a m (u n s t r e a m s) 7→ s

The Glasgow Haskell Compiler allows us to write rules
that will then be used while compiling our programs. These
”custom rules” can be expressed through pragmas, which are
instructions that can be given to the compiler. Expressing the
previous rule through these pragmas will make the example
be transformed into:

u n s t r e a m . f i l t e r s p . maps g . s t r e a m

The stream/unstream fusion rule is not a traditional fusion
rule, as it merely eliminates lists that got created while
converting operations.

In fact, the method documented so far has a very curious
and important implication. As previously stated, one can define
pragmas in order to extend the compiler. Some algebraic
transformations can be expressed through these pragmas. For
example:

map f (map g xs) = map (f . g) xs

This algebraic rule expresses that a composition of maps is
equivalent to the map of the composition of the two functions.
This rule allows for the generated code to be more efficient.

However, there is a multitude of possible function combi-
nations and, as a consequence, one could never be certain of
the number of rules necessary to cover all cases.

This is a point where the work by Coutts et al. [1] plays
an important role. As presented earlier, when writing different
stream combinators (like maps and filters), the outcome of
each stepper function that is defined depends on the outcome
of the previous stream’s stepper function.

This way, whenever a stepper function of a stream is called,
every stepper function of the streams preceding the current one
is going to be executed.

Therefore, functions are fused without the need to explicitly
state the rules performing those transformations.

The main goal of program fusion is to eliminate intermedi-
ate data structures. However, Stream Fusion achieves that at
the cost of introducing lots of intermediate Step values. These
allocations are going to be responsible for a great amount
of overhead. This situation is overcome thanks to several
optimization techniques included in GHC (e.g. case-of-case
transformation and constructor specialisation). Therefore, pro-
grams are automatically transformed and, in the end, the most
efficient solution is obtained (where all the intermediate values
mentioned have been eliminated, thus reducing unnecessary
allocations).

VII. HYLO SYSTEM

Program calculation is what is behind the techniques de-
scribed to transform programs into more efficient versions.
These techniques are based on many existing transformation
laws. However, these rules only allow us to work with pro-
grams by hand, therefore leaving the application of program
transformations necessary to obtain more efficient versions to
the programmer, and not to the computer. Fusion systems are,
as a consequence, not automatic.

Algorithms need to be developed that construct programs
based on those transformation laws. This is what the HYLO
System by Onoue et al. [12] aims to be: a fusion system
applying these transformations in a more universal and regular
way than existing ones.

First of all, we need to understand that there are two possible
approaches to fusion: search-based fusion and calculational
fusion.

The first one, search-based fusion, unfolds recursive def-
initions of functions to find suitable places inside those ex-
pressions to perform folding operations. But to achieve this,
this kind of method needs to keep track of the function calls
so it can control the unfolding, in order to avoid an infinite
process. As this introduces a great overhead, fusion cannot be
practically implemented this way.

The work by Onoue et al. [12] focuses on the second kind
of fusion, calculational fusion, which has been the object of a
lot of investigation over the years.

MAPiS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

51

This approach explores the recursive structure of each
component of the program in order to apply fusion through
existing transformation laws.

However, most of the proposed techniques for fusion have
the slight inconvenient of forcing the programmer to express
the functions in terms of the necessary recursive structure,
so that the different transformations can be applied. This
is impractical, as it leads the programmer away from more
potentially readable and natural implementations.

With this in mind, when briefly explaining their approach,
the authors of the HYLO System start by stating that the
majority of recursive functions can be expressed in terms of
a very specific recursive form: hylomorphism.

An hylomorphism is the composition of an anamorphism
(list production) followed by a catamorphism (list consump-
tion).

Consider the following Haskell implementation of the Fi-
bonacci function:

f i b 0 = 0
f i b 1 = 1
f i b n = f i b (n−1) + f i b (n−2)

The sequence of calls generated by this program could be
generalized over a binary tree, which would then collapse in
order to calculate the desired nth Fibonacci term.

This, in essence, is a hylomorphism, in which the anamor-
phism corresponds to the generation of the call tree and the
catamorphism to its collapse.

Indeed, this program could be rewritten in terms of an
unfold (anamorphism) followed by a fold (catamorphism).

f i b ’T : : I n t e g e r → I n t e g e r
f i b ’T = f o l d T (+) id ◦ u n f o l d T g

where
g 0 = Lef t 0
g 1 = Lef t 1
g n = Right (n−1, n−2)

By expressing the program this way, if the two recursive
patterns that compose the hylomorphism get fused, the creation
of the intermediate structure (call tree) is avoided.

In order to rewrite the program’s recursive components in
terms of hylomorphisms, the authors of the HYLO System
developed an algorithm to derive such general recursive struc-
tures from the recursive definitions of the program.

As such, for the previous example, the algorithm would
derive the fold ◦ unfold definition from the original fib
implementation.

Following that, schemes for data production and consump-
tion need to be captured so that the Acid Rain Theorem can
be applied to hylomorphisms, in order to fuse them.

The final step consists of inlining the resulting hylomor-
phism into a normal recursive definition, in which the inter-
mediate structures have been eliminated.

All in all, the HYLO System allows programs to be written
without the concern of expressing them in terms of specific
and more generic recursive structures, as these are derived by

an automatic algorithm. Thus, fusion laws can still be applied,
leading to more efficient programs without sacrificing so much
code readability and without forcing programmers to express
functions under certain recursive patterns. This system was
incorporated into the Haskell compiler.

VIII. CONCLUSION

Throughout the years, programming languages have come
up with new mechanisms that allow programmers to abstract
more complex ideas into simple instructions. However, these
abstractions may lead to performance issues. Chaining several
higher order functions can cause a program to perform extra
unnecessary traversals and operations if optimization tech-
niques like fusion are not implemented.

Techniques like deforestation and short-cut fusion aimed
to eliminate intermediate structures that were inevitably cre-
ated as a way to ”glue” different functions together. Other
approaches, like circular program calculation, focused on
converting algorithms which performed multiple traversals to
programs performing a single one.

Ultimately, Stream Fusion accomplishes both. By rewriting
Haskell’s List library functions in order to adapt them to
the Stream setting and, together with that, integrating with
an existing set of compiler optimization rules, this approach
accomplishes some kind of automation when it comes to
fusion. Automating this final step is something that previous
techniques have missing. In a similar way, the HYLO System
also tries to perform these transformations automatically by
extracting the recursive structure of programs and performing
fusion through the application of transformation laws.

In recent years, many languages such as C++, C# and Java
started adopting functional constructs as a form of enriching
the way they allow people to write programs. As some of
these constructs include many of the higher-order functions
presented previously, the techniques discussed in this paper
are of utter importance as the introduction of this ”functional
flavour” demands the inner workings of these languages to
cope with the introduced overhead by somehow mimicking
the formerly described optimizations.

Other areas, that are somehow related to functional pro-
gramming, also benefit from the kind of mechanisms described
throughout this paper. Attribute grammars is an example of
such an area in which fusion techniques play a very important
role [13].

REFERENCES

[1] D. Coutts, R. Leshchinskiy, and D. Stewart, “Stream fusion: From
lists to streams to nothing at all,” in Proceedings of the 12th ACM
SIGPLAN International Conference on Functional Programming, ser.
ICFP ’07. New York, NY, USA: ACM, 2007, pp. 315–326. [Online].
Available: http://doi.acm.org/10.1145/1291151.1291199

[2] A. Gill, J. Launchbury, and S. L. Peyton Jones, “A short cut
to deforestation,” in Proceedings of the Conference on Functional
Programming Languages and Computer Architecture, ser. FPCA ’93.
New York, NY, USA: ACM, 1993, pp. 223–232. [Online]. Available:
http://doi.acm.org/10.1145/165180.165214

[3] P. Wadler, “Deforestation: transforming programs to elim-
inate trees,” Theoretical Computer Science, vol. 73,
no. 2, pp. 231 – 248, 1990. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/030439759090147A

MAPiS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

52

[4] ——, “Listlessness is better than laziness: Lazy evaluation and
garbage collection at compile-time,” in Proceedings of the 1984 ACM
Symposium on LISP and Functional Programming, ser. LFP ’84.
New York, NY, USA: ACM, 1984, pp. 45–52. [Online]. Available:
http://doi.acm.org/10.1145/800055.802020

[5] R. S. Bird, “Using circular programs to eliminate multiple traversals
of data,” Acta Informatica, vol. 21, no. 3, pp. 239–250, Oct 1984.
[Online]. Available: https://doi.org/10.1007/BF00264249

[6] J. P. Fernandes, J. Saraiva, D. Seidel, and J. Voigtländer, “Strictification
of circular programs,” in Proceedings of the 20th ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, ser. PEPM
’11. New York, NY, USA: ACM, 2011, pp. 131–140. [Online].
Available: http://doi.acm.org/10.1145/1929501.1929526

[7] J. P. Fernandes, A. Pardo, and J. Saraiva, “A shortcut fusion
rule for circular program calculation,” in Proceedings of the ACM
SIGPLAN Workshop on Haskell Workshop, ser. Haskell ’07. New
York, NY, USA: ACM, 2007, pp. 95–106. [Online]. Available:
http://doi.acm.org/10.1145/1291201.1291216

[8] P. Martins, J. P. Fernandes, and J. Saraiva, Zipper-Based Modular and
Deforested Computations. Cham: Springer International Publishing,
2015, pp. 407–427. [Online]. Available: https://doi.org/10.1007/978-3-
319-15940-9 10

[9] A. Pardo, J. P. Fernandes, and J. Saraiva, “Shortcut fusion
rules for the derivation of circular and higher-order monadic
programs,” in Proceedings of the 2009 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-based Program Manipulation,
PEPM 2009, Savannah, GA, USA, January 19-20, 2009, G. Puebla
and G. Vidal, Eds. ACM, 2009, pp. 81–90. [Online]. Available:
http://doi.acm.org/10.1145/1480945.1480958

[10] ——, “Shortcut fusion rules for the derivation of circular and
higher-order programs,” Higher-Order and Symbolic Computation,
vol. 24, no. 1, pp. 115–149, Jun 2011. [Online]. Available:
https://doi.org/10.1007/s10990-011-9076-x

[11] ——, “Multiple intermediate structure deforestation by shortcut fusion,”
Science of Computer Programming, vol. 132, pp. 77 – 95, 2016,
selected and extended papers from SBLP 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167642316300880

[12] Y. Onoue, Z. Hu, M. Takeichi, and H. Iwasaki, “A calculational fusion
system hylo,” in Proceedings of the IFIP TC 2 WG 2.1 International
Workshop on Algorithmic Languages and Calculi. London, UK,
UK: Chapman & Hall, Ltd., 1997, pp. 76–106. [Online]. Available:
http://dl.acm.org/citation.cfm?id=265779.265797

[13] J. Saraiva and D. Swierstra, “Data Structure Free Compilation,” in 8th
International Conference on Compiler Construction, CC/ETAPS’99, ser.
LNCS, Stefan Jähnichen, Ed., vol. 1575. Springer-Verlag, March 1999,
pp. 1–16.

MAPiS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

53

