
An Overview on Bidirectional Transformations
José Nuno Macedo

Department of Informatics
University of Minho

Braga, Portugal
ze nuno eu@hotmail.com

Abstract—Bidirectional transformations are a way to maintain
consistency between various related sources of information. From
Model-Driven software, to relational databases and Domain-
Specific Languages, there are various applications of this tech-
nology that provide a stable and reliable methodology and set of
tools to solve problems in these areas.

This report presents bidirectional transformations, providing
an insight into this methodology. Some approaches to practical
software development using this technique are also described.

Index Terms—bidirectional transformation, synchronization,
structured programming, model update

I. INTRODUCTION

Software development has evolved considerably over the
last decades. The problems presented have become increas-
ingly complex, with increasingly complex solutions arising to
combat them. Open-source development, several frameworks,
alternative programming languages and paradigms and soft-
ware testing are some solutions for the clutter and confusion
that complex projects can create, bringing some stability to
the chaos of complex software. Some of these tools, such
as frameworks, help by guiding the developer in the right
direction, possibly being more restrictive while doing so. Some
improve development experience by providing tools to detect
errors or oversights that can and will happen in large projects,
but can be attenuated through collaborative development and
the use of software testing techniques.

While most of these tools help the project become more
robust, the availability of formally proven tools is still lack-
luster - there is no mathematical approach that can, for
most frameworks and software testing, guarantee correctness.
Therefore, several times, the security provided by these tools
is an illusion, allowing the developer to be more daring in
their approach with no scientific backing.

Several problems in software engineering are based on
maintaining several data structures that must be consistent in
their behaviour and content. Consistency between the several
data structures can be provided by a third-party program, thus
increasing the burden on the developer due to the need to
develop more software to complement the original intention.
This can be entirely avoided by using an approach that
deals with these consistency needs automatically. Bidirectional
transformations are a mechanism to improve the development
around such problems.

This reports aims to introduce bidirectional transformations
as a concept, supported by some examples and the description

of practical approaches to this concept. In section II, the
concept of bidirectional transformations is introduced, along
with some examples that illustrate possible applications of
this technique. In section III, a practical approach, known as
lenses, is approached. In section IV, BiGUL, a putback-based
bidirectional programming language, is briefly introduced.
Section V concludes this overview, pointing to more relevant
existing work.

II. BIDIRECTIONAL TRANSFORMATIONS

A bidirectional transformation model (from now on referred
as BX) contains different representations of shared data. When
any representation of the shared data is modified, all of the
representations are modified as well, reflecting this change
accordingly. This results in a permanently synchronized envi-
ronment, where every representation of data is consistent with
the others. In this report, the focus will be set on the binary
case, that is, when two different representations of data need
to be synchronized. This is a general case present in various
software projects, and BX is applicable in most of them.

A. Converting Data

A BX is an interesting approach for data conversion.
Assuming there are two different representations of the same
data that need to be consistent, a BX can be used to maintain
the consistency. An example of this is a code editor, with
syntax checking and automatic correction of common errors.
In this example, there are two different representations of
the code written by a user. The most obvious is the textual
representation, that is, the code that the user edits. There
is, however, a different representation, which is the internal
representation of said code.

This internal representation is needed as there can be a
lot of redundant and useless information in the code the user
writes. For example, white spaces, indentation and comments
are typically all useless in terms of the actual program being
written. Of course, a code editor might want to not ignore
comments and format them appropriately, but the fact that
some redundant information remains is still valid. At the same
time, the internal representation is usually in a different format
than the external one. Since the code is being parsed, it is
expected that an Abstract Syntax Tree is being generated.
This is a tree where each node represents an instruction
or segment of the program, being fundamentally different
from the external representation as the data is not a simple

MAPiS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

MAPiS 36

string anymore, being instead an appropriate data type for the
information stored. Figure 1 represents the behaviour of the
code editor.

Fig. 1. How the code editor behaves.

When an user writes code in the code editor, it is expected
that the code editor will, in turn, detect any mistakes and
produce a warning message. When this happens, a change that
was applied in the external representation must be reflected
appropriately in the internal representation so as to maintain
consistency. If consistency is not kept, it can be possible that
an error in the code is not flagged by the code editor, or that
a correct line of code is flagged as incorrect. Unless the code
editor regularly checks for consistency faults or rebuilds the
whole structure, the two data representations will stop being
synchronized, resulting in an unpleasing experience for the
user, where the software they use sabotages the workflow
instead of providing valuable feedback.

Typically, this type of applications are developed using two
separate tools, one for each direction, that is, in this example,
a parser and a pretty printer are developed separately, and
then integrated into the main software. A BX can simplify
the development process of such tools by providing a con-
sistent approach for this development. Some tools for BX
development also provide security in terms of assuring the
synchronization of the generated BX.

B. Database views and updates

The view-update problem on databases [1] was one of the
earliest problems to be studied as a BX, albeit the terminology
used was different. For this problem, consider an extremely
complex database representing the employees of a company,
and the corresponding projects of each. There are various ways
of consulting such database, some more complex than others.
It is possible to look at one table individually, to look at several
tables one at a time, to join various tables that share common
values.

In this example, an Employees table contains the name
and details of the employees of the company. Naturally, a
big volume of information is contained in this table, such
as address, phone number, e-mail, accounting details, among
others. A very simplified version of this table is presented in
Table I.

In the same database, another table, designated the Projects
table, contains information relative to projects which are being
developed at said company. Examples of data that can be found
in this table include budget, expected finish date, starting date,

TABLE I
EMPLOYEES TABLE

Id Name Age
1 John 32
2 Jack 27

TABLE II
PROJECTS TABLE

Id Employee Status
1 1 Review
2 1 Evaluation

infrastructure, employees involved, status of the project. A
very simplified version of this table is presented in Table II.

By joining the two tables, a new, more complete table,
is created. This table is created by uniting the two previous
tables, matching the lines where the employee ID is equal.
In it, it is easier to see which employee is working on which
project. Thus it can be concluded, on Table III, that John is
working in projects 1 and 2.

TABLE III
UNION OF THE EMPLOYEES AND PROJECTS TABLES

Project Id Employee Status Age
1 John Review 32
2 John Evaluation 32

Table III can be read as a view of the source, which is
the entire database, containing tables I and II. For complex
databases, a view is necessary to generate a readable table, as
various tables have to be connected in order to form a readable
result. However, this view poses a problem.

If the user performs any type of changes in the view, then
those changes need to be immediately reflected on the database
accordingly. This is because the consistency must be kept, but,
more important than that, because otherwise the changes the
user performs could be lost.

In this example, if the user deletes the name John from
both entries, there is no well-defined behaviour for the BX.
In the Projects table, projects could be kept with null entries
for the employees or the projects could be kept and the status
changed to Cancelled. In the Employees table, John could be
removed, representing that he was fired, or he could be kept,
and perhaps relocated to a different project or section of the
company.

The correct behaviour must be specified beforehand, in
a way that assures consistency between user actions. The
propagation of an update from the view to the source must
also be correct, such that it does not destroy the database in
any way.

C. Development based on Software Models

When developing software, a possible approach is to create
a model representing the part of the software that is to be
worked on. As such, a layer of abstraction is created, and the
developer can focus on just the important aspects, present in

MAPiS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

37

the model, while abstracting the irrelevant aspects, which are
hidden by the model. In this situation, BX are relevant as the
model is a view of the original software, which is the source.
As such, changes applied to the model should be reflected on
the original software appropriately, and vice versa.

A software product can have several different models related
to it. They can be different representations of the same
component, or different components. However, the purpose
is always to abstract. The updates to be performed on the
original software when a model is changed can be extremely
complex in some cases, as some models, through abstraction,
create various layers of complexity in the process of actually
applying the changes to the original software.

One of the most commonly known examples where this can
be applied is the object-relational mapping (ORM) technique.
According to it, in object-oriented programming languages, the
software should not access the database directly, opting instead
for having a layer for communication with the database.
This layer contains various objects that represent parts of the
database, and all of the communications with it are described
inside, such that a neat and clean interface is provided for the
communication. In a sense, these objects are models of parts
of the database. The developer does not have to be concerned
with how the database works or responds, he only has to
interact with the simple-by-design objects.

III. LENSES

A. Definition

While there are several techniques for approaching BX in
terms of development, this report will shift the focus into the
lenses approach. This is an approach that has gained a lot
of traction in recent years [2] [3] [4]. An asymmetrical lens
consists of two functions, given a source S and a target V :

get : S → V (1)
put : S × V → S (2)

The get function, given a source, produces a corresponding
view, such that get s would produce a view v. The put function,
given the old source and an updated view, updated the source
with the changes applied to the view, such that put(v’,s) would
produce a new, updated source. It is asymmetrical due to the
fact that the view determined by the source.

For the database example, a view can be a certain join of
two tables, obtainable by a get function. The put function then
updates the database with the updated table.

Additionally, a lens is well-behaved when it satisfies:

∀s put(s, get s) = s (3)
∀s, v get(put(s, v)) = v (4)

The law 3 is known as the GetPut law. It states that putting
a view as it was taken from the source does not change
it. This is a desired behaviour in various applications of
BX- it is expected that, if a joined table from a database is
unchanged, then the database itself should remain unchanged.

This property is sometimes referred as a hippocratic property,
that is, a property that prevents unnecessary harm in the
system.

The law 4 is known as the PutGet law. According to it, when
putting a view into the source, and then taking a view from
the source, the resulting view should be equal to the original
view. In some situations, it is desired, in others, not so much.
Putting an invalid view into the database, for example, can
result in ignoring the put command, and therefore performing
a get afterwards will yield different results. In the database
example, inserting an employee with a negative age can be
considered an invalid put, and therefore discarded. However,
when assuming that the view to put into the source is valid,
then this property is also generally desired. It is sometimes
referred as a correctness property, as it guarantees that the put
action is performing desired results.

A well-behaved lens is very well-behaved when it satisfies:

∀s, v, v′ put(put(s, v), v′) = put(s, v′) (5)

The property 5 is known as the PutPut property. According
to it, putting a view into the source and then immediately
putting another view in the resulting has the same effect as
only putting the last view into the source. This happens when
putting a new view overwrites the results of putting a previous
view.

There are other types of lenses besides symmetrical lenses,
such as symmetric lenses [5], edit lenses [6] and matching
lenses [7].

B. Practical Approach
There have been various practical approaches to BX sys-

tems in programming over the last few years. The focus, how-
ever, will be set in a lens library for the Haskell programming
language [8]. This library provides a set of tools for building
and manipulating lenses in Haskell. This set of tools allows the
developer to very easily manipulate complex data structures,
by simplifying the access of these data structures through
lenses.

In practice, this library provides ways to build put and get
functions adequately for each problem. In Listing 1, several
examples of code are presented.

Listing 1. Examples of lenses using this library
s o u r c e = (” h e l l o ” , (” wor ld ” , ” ! ! ! ”))

ge t v i ew1 = ˆ . 1
ge t v i ew2 = ˆ . 2 . 1

view1 = ge t v i ew1 s o u r c e
view2 = s o u r c e ˆ . 2 . 1

pu t v iew1 = s e t 1 42
pu t v iew2 = s e t (2 . 1) 42

u p d a t e 1 = pu t v iew1 s o u r c e
u p d a t e 2 = s e t (2 . 1) 42

(” h e l l o ” , (” wor ld ” , ” ! ! ! ”))

MAPiS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

38

In this block of code, a source is declared, according to the
type S×(S×S), where S is a text string. In fact, this is a simple
source, but it is used for demonstration purposes. Two get
functions are defined, namely get view1 and get view2. The
ˆ operator indicates a specification of a get, and the following
argument is the position of the record that is related to this
operation. In get view1, 1 is used to specify the first record,
and in get view2, 2. 1 is used to specify the first record
inside the second record.

The view1 and view2 constants represent views, calculated
from applying the get functions to the source. Two alternative
but equivalent definitions are shown in these definitions. The
constant view1 contains the first record, that is, ”hello”, while
view2 contains the first record inside the second record, that
is, ”world”.

For the definition of put, two examples are also displayed.
The function put view1 puts the value 42 in the first record,
and the function put view2 puts the value 42 in the first record
inside the second record. As such, applying put view1 onto the
source produces a new source of value (42,(”world”,”!!!”)),
and applying put view2 onto the source produces a new source
of value (”hello”,(42,”!!!”)).

It is important to note that Haskell is a strongly-typed
programming language. As such, it is not always trivial to
change the type of the data in a simple way. However, the
lenses provided in this library are flexible in this sense, as they
allow the developer to either create simple lenses that preserve
the type of information, or slightly more complex lenses that
can modify the type of information while still abiding to the
same rules and operators that are used for the simple lenses.
In fact, lenses can also be composed, and as such, a complex
lens for a complex source can be defined as a composition of
various simple lenses, which are easy to understand and debug
individually, but act as building blocks of a powerful tool.

For more complex data types, this library allows for the
use of a Template Haskell construct to automatically derive
adequate lenses. In practice, this results in efficient develop-
ment cycles for the developer, as manually creating lenses for
complex data structures can be time-consuming and confus-
ing. This library is open-source and well documented, with
hundreds of examples fit to various different problems.

IV. BIGUL

Putback-based bidirectional programming is an approach to
bidirectional programming in which part of the development
cycle is automatically generated by construction. In fact, it
defines that, for a BX to be properly defined, only the putback,
that is, the put function, must be defined, and the get function
can be automatically derived from it. The opposite is not true
- given a get function, there are several ways to define the put
function.

Considering the previous example of the database, when
a view, that is, a joined table, is changed, by deleting an
employee, there are several ways to reflect that change on the
database. However, given a definition on how to reflect the

change on the database, the reverse process, that is, getting
the information from the database, is unique.

BiGUL (Bidirectional Generic Update Language) [9] is a
putback-based bidirectional programming language, comple-
mentar to the Haskell programming language. It is formally
verified with the Agda [10] programming language, there-
fore guaranteeing that any putback transformation written in
BiGUL is well-behaved, that is, that they obey the prepositions
3, 4 and 5.

While BiGUL is an elaborate tool that allows for the
development of complex and deep systems, it is not as user-
friendly as the lenses library presented in subsection III-B. As
such, this overview shall only cover some constructs present
in it briefly, while still encouraging readers to read upon and
experiment with this tool [11].

The following constructs are building blocks available in
the BiGUL language, for the definition of put:

• Replace - Replaces a value in the source with the pro-
vided value in the view.

• Skip - Ignores the value in the view, thus keeping the
source intact.

• Fail - Fail, producing an error message. Useful for
defining incorrect behaviour.

• CaseS - Produce a case statement, similar to the switch
statement in several imperative languages, where the
source is matched against conditions until one is matched,
and then the associated code is executed.

• CaseV - Similar to CaseS, but matching against the view.
• RearrS - Rearrange the source into a more desirable

intermediate data representation. Useful for facilitating
some more complex matches between structures that
differ between the source and view.

• RearrV - Similar to RearrS, but rearranging the view.
• Align - Match a list of information in the view with a

more complex list of information in the source, therefore
describing how to perform a put into a more complex
structure.

• Update - Syntactic sugar, allows the use of pattern
matching to simplify the usage of some of the previous
constructs.

Having these constructs defined, complex put operations can
be defined by composing them adequately, according to the
syntax of BiGUL. By using them, the developer has a formal
guarantee that the BX is well-behaved, as well as only having
to specify part of the program and having the rest be generated
“for free”.

The developer can also force the usage of a self-defined
put, instead of using the available tools to build one. While
this may allow for an easier definition of put, it also means
that there is no formal backing or automatic generation of
get, so the advantages of the tool are lost. However, if there
is a guarantee that the supplied put-get pair is correct, then
this approach can facilitate the development of some programs
where some components can be difficult to express in BiGUL,
and therefore be expressed directly instead.

MAPiS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

39

V. CONCLUSIONS

In this report, bidirectional transformations are presented
as an underlying problem to several software projects, and at
the same time, as the solution. In fact, thinking of software
problems as bidirectional transformations can provide more
insight on how to adequately approach them, using techniques
that are safe and simple to use when correctly employed.

Some contextualization is provided through the data con-
version, database updates and software model development
examples. However, it is important to keep in mind that
bidirectional transformations are not stuck in these areas -
these are merely examples of a more generic approach to
synchronization problems.

Contextualized into bidirectional transformations, the lenses
approach is a recent and interesting approach to solving
complex problems. In fact, it is an abstract concept, which has
been implemented into, among others, the library described in
subsection III-B.

BiGUL, on the other hand, implements the concepts of
bidirectional transformations into a concrete programming
language, supported by formal backing and automated pro-
gram generation. As opposed to the lenses library, which is a
complementary library for the Haskell programming language,
BiGUL describes a standalone language.

There is plenty of work in the area of bidirectional trans-
formations, ranging from work on XML Schemas [12] to
applications of this technique to databases. The refinement of
this approach represents an important step in the evolution
of synchronization approaches for software problems, as it
proposes interesting approaches to problems that are relatively
common in software development but not always correctly
handled.

REFERENCES

[1] F. Bancilhon and N. Spyratos, “Update semantics of relational views,”
ACM Trans. Database Syst., vol. 6, no. 4, pp. 557–575, Dec. 1981.
[Online]. Available: http://doi.acm.org/10.1145/319628.319634

[2] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt, “Combinators for bidirectional tree transformations:
A linguistic approach to the view-update problem,” ACM Trans.
Program. Lang. Syst., vol. 29, no. 3, May 2007. [Online]. Available:
http://doi.acm.org/10.1145/1232420.1232424

[3] A. Bohannon, B. C. Pierce, and J. A. Vaughan, “Relational lenses:
A language for updatable views,” in Proceedings of the Twenty-fifth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, ser. PODS ’06. New York, NY, USA: ACM, 2006, pp. 338–
347. [Online]. Available: http://doi.acm.org/10.1145/1142351.1142399

[4] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and
A. Schmitt, “Boomerang: Resourceful lenses for string data,” in
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’08. New
York, NY, USA: ACM, 2008, pp. 407–419. [Online]. Available:
http://doi.acm.org/10.1145/1328438.1328487

[5] M. Hofmann, B. Pierce, and D. Wagner, “Symmetric lenses,” SIGPLAN
Not., vol. 46, no. 1, pp. 371–384, Jan. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1925844.1926428

[6] ——, “Edit lenses,” in Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’12. New York, NY, USA: ACM, 2012, pp. 495–508. [Online].
Available: http://doi.acm.org/10.1145/2103656.2103715

[7] D. M. Barbosa, J. Cretin, N. Foster, M. Greenberg, and
B. C. Pierce, “Matching lenses: Alignment and view update,”
in Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ser. ICFP ’10. New
York, NY, USA: ACM, 2010, pp. 193–204. [Online]. Available:
http://doi.acm.org/10.1145/1863543.1863572

[8] E. A. Kmett, “Lenses, folds and traversals,”
https://github.com/ekmett/lens, 2018.

[9] H.-S. Ko, T. Zan, and Z. Hu, “Bigul: A formally verified
core language for putback-based bidirectional programming,” in
Proceedings of the 2016 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, ser. PEPM ’16. New
York, NY, USA: ACM, 2016, pp. 61–72. [Online]. Available:
http://doi.acm.org/10.1145/2847538.2847544

[10] U. Norell, “Towards a practical programming language based on depen-
dent type theory,” 2007.

[11] Z. Hu and H.-S. Ko, Principles and Practice of Bidirectional
Programming in BiGUL. Cham: Springer International Publishing,
2018, pp. 100–150. [Online]. Available: https://doi.org/10.1007/978-3-
319-79108-1 4

[12] Z. Hu and J. de Lara, Eds., Theory and Practice of Model
Transformations - 5th International Conference, ICMT 2012, Prague,
Czech Republic, May 28-29, 2012. Proceedings, ser. Lecture Notes in
Computer Science, vol. 7307. Springer, 2012. [Online]. Available:
https://doi.org/10.1007/978-3-642-30476-7

MAPiS 2019 - First MAP-i Seminar Proceedings
January 31, Aveiro, Portugal

40

