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Abstract—Mining interesting features from time series is a
crucial task for time series clustering. Typically, such features
are obtained from time series specific characteristics such as
trend, period, seasonality and other global measures. A recent
approach consists on mapping the time series into a graph and
then characterize the time series from a graph point of view,
that is, using topological metrics. This approach depends on the
mapping of the series onto the graph, which is not always an
obvious task. In this work two concepts of existing mappings are
explored and it is shown that the joint use of these mappings
can be an advantage for the grouping of time series. In order to
evaluate the proposed approach, the time series grouping based
on the metrics extracted from the visibility networks and the
quantile networks of time series is applied to a set of specific time
series models. The results are promising and show the networks’
potential for time series grouping.

Index Terms—Clustering, Time Series, Complex Networks,
Topological Features

I. INTRODUCTION

A time series is a collection of observations indexed in
time. The main purpose of time series analysis is to develop
mathematical models that provide plausible descriptions of
the characteristics of the data with a view to forecasting,
simulation and control [1].

The classification of time series is an intrinsic activity to
facilitate the handling and the organization of the enormous
amount of information that we can capture. However, this is
still a very explored field given the great diversity of data and
the difficulty in finding an ideal model for the accomplishment
of such series classification [2].

The analysis of complex networks has been receiving in-
creasing interest from the research community [3] and this
led to the emergence of the new field of Network Science
[4]. This field has shown to be very promising with respect to
data clustering tasks [5], through the use of topological graph
measurements that are currently available [6].

Several network-based time series analysis approaches have
been recently proposed, based on mapping time series to the
network domain. The mappings proposed in the literature
are based on concepts such as correlation [7], phase space
reconstruction [8], recurrence analysis [9], visibility [10] or
transition probabilities [11]. Some mappings result in networks
that have as many nodes as the number of observations in
the time series, such as visibility mappings, but others, such
as a quantile based mapping [11], allow to reduce the di-
mensionality of the series while preserving the characteristics

of the time dynamics. Network-based time series analysis
techniques have been showing promising results and have
been successful in the description, classification and clustering
of time series of real datasets. Examples of this include
automatic classification of sleep stages [12], characterizing
the dynamics of human heartbeat [13], distinguishing healthy
from non-healthy electroencephalographic (EEG) series [14]
and analyzing seismic signals [15].

The general problem of time series clustering concerns the
separation of a set of time series into clusters, with the property
that the series of the same group have a similar structure and
characteristics, and different from the series of other groups.
A fundamental problem in the clustering and classification
analysis is the choice of a relevant metric. Existing time
series clustering approaches are mainly based on methods of
distance, such as the Euclidean distance in space points in
order to separate the group of time series of clusters, and
on approaches based on resources extracted in time domain,
frequency domain and wavelet decomposition of the time
series, which are later grouped using grouping methods [16].
These approaches have limitations, distance-based methods do
not produce the best results and proving to be insufficient. And
the methods based on the characteristics of the series depends
on the calculation of these characteristics which is not a trivial
task since there are several ways to reach your result (or its
approximation), as well as the need to pay attention to some
parameters, given the diversity of existing time series.

In this work we propose a new approach to group time series
in different classes. This approach consists of constructing
three network mapping (natural visibility graphs, horizontal
visibility graphs and quantile graphs), for each of the time
series and calculating the global topological metrics of these
networks, that is, average grade, average path length, number
of communities, clustering coefficient, and modularity. This set
of metrics forms a vector of topological characteristics of the
networks that served to feed a clustering algorithm, k-means.

We show the potential of this new approach in a large set
of simulated time series models, linear and nonlinear models,
and confirm that the use of the different types of mapping of
these models in networks results in a set of features that can
capture information encoded in each one of the models and
thus distinguish them from unsupervised manner.

This paper is organized as follows. We start, in the section
II, with a presentation of the background on time series
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and complex networks. In the section III, we presented a
background of time series mappings to complex networks,
in the section IV we describe of the approach proposed for
this work and presented of the obtained results and their
analysis. Finally, in the last section (V), we presented the main
conclusions and we mention some of future work.

II. BASIC CONCEPTS

A. Time Series

A time series YT = (y1, . . . , yT ) is a set of observations
collected at different (usually equidistant) points in time. The
main characteristic of a time series is the serial dependence
between the observations which restricts the applicability of
many conventional statistical models traditionally dependent
of the assumption of independent and identically distributed
(i.i.d) observations. The main purpose of the analysis of a time
series is to develop mathematical models that provide plausible
descriptions of the characteristics of the data with a view to
forecasting, simulation and control [1].

In our work, we are essentially interested in extracting
the most relevant characteristics of the time series through
the science of networks so that we can distinguish different
models of time series. The traditional approach to analyses
the data under these circumstances is to decompose the time
series in trend, cycle, seasonality and random components.
Trend component indicates the long term behavior of the
series. The cycle is characterized by smooth and repeated
oscillations of rise and fall in the time series around the trend.
Seasonal component corresponds to the oscillations of ascent
and descent that occur with a fixed period, for example, within
a year that they are usually related to the seasons of the year.
And the random component represents all the other effects
resulting from a multiplicity of factors and of unpredictable
nature.

We say that a time series is stationary when its statistical
characteristics (mean, variance) are constant over time, that is,
its data oscillate around a constant mean with the variance of
the fluctuations remaining essentially the same. The stationar-
ity implies that correlation between observations depends only
on the time lag between the observations. Most of the methods
and models used in time series area imply that the series are
stationary.

1) Time Series Models: There are many time series models
available in the literature. The models are classified into linear
and nonlinear. In this work we will simulate a large set of some
time series models most used and useful in series analysis.
Below we present with more detail each one of these models
to use.

The simplest time series process is the purely random
process or white noise, (εt). A white noise is a sequence of
i.i.d. random variables with zero mean and constant variance,
σ2
ε . A particular case is the Gaussian white noise, where εt

are independent normal random variables [17].
a) Linear models: Linear time series models are es-

sentially models for which the conditional mean is a linear
function of past values of the time series [18].

AR(p): yt is an autoregressive process of order p if it
satisfies the following equation [17]:

yt =

p∑

i=1

φiyt−i + εt

where p is the number of autoregressive terms and εt is a
white noise process. This model explicitly specifies a linear
relationship between the current and past values as suggested
by its name. In this work we will study three particular AR
models: two AR(1) models with φ1 ∈ {−0.5, 0.5} and one
AR(2) model with φ1 = 1.5 and φ2 = −0.75.

ARIMA(p, d, q): an autoregressive moving average,
ARMA, process combines AR processes and Moving Average,
MA, processes which consist of a linear combination of i.i.d
random variables (white noise) [17]. Thus, yt is an ARMA
process of order (p, q) if it satisfies the equation:

yt =

p∑

i=1

φiyt−i +

q∑

i=1

θiεt−i + εt

(
1−

p∑

i=1

φiB
i

)
yt = (1 +

q∑

i=1

θiB
i)εt

Φ(B)yt = Θ(B)εt (1)

where the white noise εt is usually a Gaussian process, φi,
i = 1, . . . , p are constants such that Φ(z) = 1−∑p

i=1 φiz
i 6=

0 for |z| ≤ 1 and θi, i = 1, . . . , q are constants such that
Θ(z) = 1 +

∑q
i=1 θiz

i 6= 0 for |z| ≤ 1. B represents the
backshift operator, Byt = yt−1.

Now, assume that you have a nonstationary time series,
xt but whose dth-difference yt = ∇dxt is a stationary
ARMA(p, q) process. This means that the time series y whose
value at time t is the difference between xt+d and xt. Then
xt is said an AutoRegressive Integrated Moving Average,
ARIMA(p, d, q), process and satisfies the following equation:

Φ(B)yt(1−B)dxt = Θ(B)εt (2)

In this work we will study an ARIMA(1,1,0) model.
ARFIMA(p, d, q): a generalization of the ARIMA(p, d, q)

process by allowing the parameter d to assume real values. An
time series is said to be a autoregressive fractionally integrated
moving average, ARFIMA, model if it satisfies the equation:

(1−
p∑

i=1

φiB
i)(1−B)dxt = (1 +

q∑

i=1

θiB
i) + εt (3)

where (1 − B)d =
∑∞
k=0

(
d
k

)
(−B)k, parameter d is said

the long memory parameter since it controls the rate of decay
of the autocorrelation function. When d 6= 0 the rate of decay
is hyperbolic meaning that persistence in the autocorrelations:
there is significant dependence between observations separated
by long time intervals [17]. In this work we will study two
ARFIMA(1, 0.4, 0) models with φ1 ∈ {−0.5, 0.5}.
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b) Nonlinear models: The initial development of nonlin-
ear time series analysis focused on several nonlinear paramet-
ric forms. We can distinguish specifications for the conditional
mean and specifications for the conditional variance [19].

SETAR(1): the self-exciting threshold autoregressive (SE-
TAR) models of order 1 specify the nonlinearity in the
conditional mean. These are very useful for processes in which
regime changes occur, where the idea is to approximate a
nonlinear function in a linear function dependent on the regime
that changes according to the process values [20]. This model
can be presented as follows:

yt =

{
αyt−1 + εt, if yt−1 ≤ r
βyt−1 + γεt, if yt−1 > r

(4)

where r represents a real threshold and d is the delay
parameter.

INAR(1): the INAR models have been proposed to model
correlated integer-valued time series [21]. These models are
based on thinning (random) operations defined on the integers.
The most common such operation is the binomial thinning
defined as follows. Let X be an integer valued random variable
and 0 < α < 1. Then α ∗X =

∑X
i=1 χi where χi ∼ Be(α),

meaning that α ∗X|X ∼ Bi(X,α). The time series yt is said
an INAR(1) if it satisfies:

yt = α ∗ yt−1 + εt (5)

where α ∈ [0, 1], εt are integer valued time series and ∗
defines the binomial thinning operation.

GARCH(p, q): an autoregressive conditional heteroscedas-
tic model was created to model the volatility (or conditional
variance) that is not constant in time, in a homogeneous time
model. The basic idea of ARCH models is that the asset
return is serially uncorrelated, but dependent, and that the
dependence can be described by a simple quadratic function
of its lagged values [22]. GARCH is a generalization of the
ARCH(q) process that propose that conditional volatility be a
function not only of the squares of past errors, which is the
case of ARCH models, but also of their own past values [18].
To model a time series σ2

t using a generalized ARCH process,
we define:

σ2
t = ω +

q∑

i=1

αiε
2
t−i +

p∑

i=1

βiσ
2
t−i (6)

where ω > 0 and αi, βi ≥ 0, εt is an uncorrelated
random variable, zt a white noise with variance 1 and σt the
standard deviation (εt = σtzt). p ≥ 1 represents the order of
dependence of the conditional variance and q ≥ 0 represents
the order of dependence of past shocks. In this work we will
study GARCH(1, 1) simulated model.

B. Complex Networks

graphs are a very appropriate modeling tool to represent
a set of elements that interact and which exhibit emergent

collective properties, in which the elements and their rela-
tions are represented by nodes (or vertices) and links (or
edges), respectively. Such a graph has non-trivial topological
properties, due to the specific characteristics of the system
it represents [23]. We call this graphical representation of
complex network. We will use these two terms, graph and
network, interchangeably.

1) Graph Terminology and Concepts: A graph (G) is then
an ordered pair (V (G), E(G)), where V (G) represents the set
of nodes and E(G) the set of links between pairs of elements
of the set V (G). The number of nodes, also known as the size
of the graph, is written as |V (G)| and the number of links as
|E(G)|. A k-graph is a graph of size k.

Two nodes are neighbors or adjacent if they are connected
by a link, that is, if (vi, vj) ∈ E(G) then vi and vj are
neighbors. We can distinguish between directed links, which
connect a source node to a target node, and undirected links,
when there is no such concept of orientation. In the first case
the graph is called directed or digraph.

A graph can also be weighted, this means that at each link
(vi, vj) is associated with a weight (or cost) wi,j , and this
weight can be positive or negative.

A graph is classified as simple if it does not contain multiple
links, two or more links connecting the same pair of nodes,
and it does not contain self-loops (a link connecting a node
to itself).

a) Path: A path is a sequence of nodes in which each
consecutive pair of nodes in the sequence is connected by a
link.

b) Connectivity: The concept of connectivity is ex-
tremely important in networks. We say that two nodes are then
connected if there is a path between them and are disconnected
if such a path does not exist. In undirected graphs, if nodes
vi and vj are connected and nodes vj and vk are connected,
then vi and vk are also connected. This property can be used
to partition the nodes of a graph in non-overlapping subsets
of connected nodes known as connected components [6].
Although there is at least one path between any two nodes in
the same component, there is no path between nodes belonging
to different components [4].

2) Topological Metrics: There is a vast set of topological
metrics of available graphs [6], each reflecting some particular
features of the system under analysis. In our work we are
essentially concerned with studying a specific set of simple
metrics. We present below a brief description of them.

a) Average degree: The degree of a graph is a fairly
important local property of each node, this represents the
number of links that the node has for the other nodes, in
undirected graphs [4]. We denote by ki the degree of the i-th
node.

In digraphs, we distinguish between the in-degree, kini , and
the out-degree, kouti . The first represents the number of links
that point to node vi, and the second the number of links that
point from node vi to other nodes. The total degree, ki, in a
digraph is given by the sum of the two.
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In weighted graphs we may want to obtain the weighted
degree that is similar to the previous measure, the difference
is that instead of adding the quantity of connections, we sum
the weights of each of the links [6].

From this measure we can obtain the average degree (k̄)
that can be easily obtained by calculating the arithmetic mean
of the degrees of all nodes in the graph.

b) Average path length: A path is a sequence of nodes
in which each consecutive pair of nodes in the sequence is
connected by a link. It may also be useful to think of the path
as the sequence of links that connect those nodes. In digraphs
the path follows the direction of the source node for the target
node.

We denote by d̄, the arithmetic mean of the shortest paths
(d) among all pairs of nodes (both ways for directed graphs),
the path length being the number of links, or the sum of the
links weights if the graph is weighted, in the path [4]. It should
be noted that d̄ is measured only for the node pairs that are
in the same component.

For a directed graph the average path length is given by:

d̄ =
1

|V (G)|(|V (G)| − 1)

|V (G)|∑

i,j=1
i6=j

di,j (7)

c) Global clustering coefficient: This measure (C), also
called global transitivity, measures the total number of closed
triangles in the graph, that is, it measures the degree to which
the nodes in a graph tend to cluster. It is calculated by the
ratio of the number of closed triangles (N4) to the number of
possible triangles, that is, the amount of connected triplets of
nodes (N3) [6]. In this work we will call it only as a clustering
coefficient.

For undirected and unweighted graphs, we mathematically
have to:

C =
3N4
N3

(8)

Factor three explains the fact that each triangle can be seen to
consist of three different triangles, one with each of the nodes
as the central node, and ensures that 0 ≤ C ≤ 1. For directed
graph the direction of the edges is ignored.

For weighted graphs there are several generalizations of
clustering coefficient, here we use the definition by A. Bar-
rat [24], this is a local vertex-level quantity, its formula is:

Ci =
1

kwi (ki − 1)

∑

j,h

(wi,j + wi,h)

2
ai,jai,haj,h (9)

where kwi is the weighted degree, ai,j are elements of the
adjacency matrix, ki is the degree and wi,j are the weights.

d) Number of communities: Number of communities(S)
measures the number of denser subgraphs in a network, that
is, subsets of nodes within the graph such that connections
between the nodes are denser than connections to the rest of
the network.

The function we used to help us calculate this metric tries
to find densely connected subgraphs, also called communities

here, via random walks. The idea is that short random walks
tend to stay in the same community. This function is the imple-
mentation of the Walktrap community finding algorithm [25].

e) Modularity: Measures how good the division of the
graph is in specific communities, that is, how different are the
different nodes, belonging to different communities, from each
other. A high modularity value, (Q), indicates a graph with a
dense internal community structure, that is, with many edges
between nodes within communities and sparse connections
between nodes of different communities [26].

If a particular network is split into c communities, Q
can be calculated from the symmetric c × c mixing matrix
E(G) whose elements along the main diagonal, eii, give the
fraction of connections between nodes in the same community
i while the other elements, eij(i 6= j) identify the fraction of
connections between nodes in the different communities i and
j. The calculation of Q can then be performed as follows [6],
[26]:

Q =
∑

i

[eii − (
∑

j

eij)
2] (10)

The situation Q = 1 identifies networks formed by discon-
nected modules.

III. MAPPINGS FROM TIME SERIES TO COMPLEX
NETWORKS

Several network-based time series analysis approaches have
been recently proposed, based on mapping time series to the
network domain. The objective is to map a time series for a
complex network using a particular concept, in our particular
work, based on the concepts of visibility and probability of
transition existing in the literature.

A. Natural Visibility Graph

This method was proposed for the first time by Lacasa et
al. [10]. Named natural visibility graph (NVG), each node in
the graph corresponds, in the same order, to the time series
data and two nodes are connected if there is a line of visibility
between the corresponding data points, that is, if it is possible
to draw a straight line in the time series that joins the two
corresponding data points that intercepts no data ”height”
between them. If we consider each time instant as a node
of a graph, then two nodes are connected if the tops of the
corresponding vertical bars are visible to each other, that is, if
there is a straight line from the top of the two bars that does
not intersect other bars. This mapping is illustrated in figure 1
with a toy time series and the resulting network.

The resulting graph has as many nodes as the number of
observations in the time series. The nodes are numbered se-
quentially in time and each node corresponds to an observation
(ta, ya). Two nodes (ta, ya) and (tb, yb) are connected (have
visibility) if any other observation (tc, yc) with ta < tc < tb
satisfies:

yc < yb + (ya − yb)
(tb − tc)
(tb − ta)

(11)
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Fig. 1: On the left side, we present the plot of a toy time
series and, on the right side, the network generated by the
natural visibility algorithm. The red lines in the time series
plot represent the lines of visibility (and hence the links of
the graph) between all data points.

The graphs obtained always have the following characteris-
tics [10]:
• Connected: each node sees at least its nearest neighbors

(left-hand side and right-hand side).
• Undirected: the way the algorithm is built up, there is

no direction defined in the links. However, this direction
could be defined considering the direction of the time
axis.

• Invariant under affine transformations of the series
data: the visibility criterion is invariant under reschedul-
ing of both the horizontal and vertical axis, as well as in
horizontal and vertical translations.

• ”Lossy”: some information regarding the time series
is inevitably lost in the mapping from the fact that
the network structure is completely determined in the
(binary) adjacency matrix. For instance, two periodic
series with the same period as Ya = ..., 3, 1, 3, 1, ...
and Yb = ..., 3, 2, 3, 2, ... would have the same visibility
graph, albeit being quantitatively different. One possible
solution would be the use of weighted networks, where
weights determine the height difference of the associated
data, for example.

B. Horizontal Visibility Graph

In order to reduce the computational complexity associated
to NVG, Luque et al. [27] proposed in 2009 a simplified NVG
method called the horizontal visibility graph (HVG), which
inherits all NVG features mentioned above.

In this alternative, two nodes in the graph are connected if it
is possible to draw a horizontal line in the time series joining
the two vertical bars, corresponding to the two data, which
does not intercept any height of the intermediate data. In the
figure 2 we give a simple illustration of this method, with a
toy time series and the resulting network.

Formally, two nodes (ta, ya) and (tb, yb) are connected,
have visibility, if the following condition is fulfilled:

ya, yb > yc (12)

for all tc such that ta < tc < tb.

Fig. 2: On the left side, we present the plot of a toy time series
and, on the right side, the network generated by the horizontal
visibility algorithm. The green lines represent the horizontal
lines of visibility between all the data points and the red lines
the respective connections between the points.

The HVG is always a subgraph of the NVG associated with
the same time series, for example, if we analyze both graphs
in the figures 1 and 2 we can easily verify that all the links
present in the HVG are present in NVG, but there are links
in NVG that are not in HVG, two examples are links (7, 9)
and (13, 15). Therefore, the HVG nodes will always have a
degree less than or equal to the nodes of the corresponding
NVG, since they will have ”less visibility” and consequently
will have less quantitative information.

C. Quantile Graph

Quantil graphs (QG) were introduced by Campanharo et
al. [11]. It is a different approach from previous methods
of visibility, but captures oscillations over time. This method
divides the time series into Q quantiles, q1, q2, ..., qQ, and each
quantile, qi, is associated to a node vi of the graph. So the
graph has as many nodes as the number of quantiles. Two
nodes va and vb are connected by a weighted directed link
(va, vb, wa,b), where the weight wa,b represents the number
of times an observation (tn, yn), belonging to the quantile
qa, is followed by an observation (tn+1, yn+1, belonging
to the quantile qb. The weights are normalized such that
the adjacency matrix becomes a Markov transition matrix,
where

∑
wa,b = 1. The resulting networks are weighted and

directed. This mapping is illustrated in figure 3 with a toy time
series and the resulting network.

These networks have a significant loss of information on
small amplitude variations, especially if the value of Q is
very small. Its connectivity represents the causal relationships
contained in the dynamics of the process it represents.

For this work we chose to use 50 quantiles and let us refer
to the generated QGs as 50-QG or simply Q50.

IV. CLUSTERING OF TIME SERIES MODELS

The purpose of cluster analysis is to discover the natural
groupings of a set of patterns, points, or objects. It consists of
the empirical formation of groups of objects, called clusters,
with high intra-cluster similarity and low inter-cluster similar-
ity. That is, given a representation of n objects, the goal is
to find k clusters based on a measure of similarity, so that
the similarities between objects in the same cluster are high,
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Fig. 3: On the left side, we present the plot of a toy time
series and, on the right side, the network generated by the
quantile algorithm. The different colors represent the region
(in the time series plot) corresponding to the different quantiles
(in this case Q = 4). Repeated transitions between quantiles
result in edges in the network with larger weights represented
by thicker lines.

whereas the similarities between objects in different clusters
are low [28].

In the clustering of time series, we can distinguish between
two main categories, the one that performs clustering on a set
of time series with the purpose of grouping them in different
clusters, and the one that performs clustering on ”windows”
of a single time series whose objective is to find similarities
and differences between different windows of time. Here we
focus on the first category.

One of the major problems in time series clustering analysis
is the choice of a relevant metric to perform grouping. Ap-
proaches involving the measure of similarity between global
characteristics of the time series were proposed to improve
old approaches based on similarity measures (eg, Euclidean
distance, Dynamic Time Warping, autocorrelation, spectrum,
...), between the actual observations of time series [16]. In this
paper we present a new approach in this direction that consists
of resorting to the science of complex networks.

More precisely, we propose an approach that involves the
measurement of similarity between characteristics, where the
set of resources (topological metrics) used for clustering
analysis are extracted from complex networks that are created
for each of the time series that we want to group. Therefore,
the proposed approach involves the following tasks:

1) For each of the time series under analysis, we generated
the corresponding natural visibility graph (NVG), the
horizontal visibility graph (HVG) and the quantile graph
(QG). For the QG we use a total of 50 quantiles.

2) For each of the networks (or graphs) we have computed
the five topological metrics mentioned in subsection
II-B: k̄, d̄, S, C, and Q.

3) Since the interval of each of the calculated measures can
vary significantly, we apply the Min-Max normalization
so that each measure is in the range [0, 1], preventing
some measures from dominating the others in the group-
ing process.

4) After calculating all the metrics, we obtain a vector with

fifteen topological features, which will be scaled through
the principal component analysis (PCA) [29] and then by
the t-distributed stochastic neighbor embedding (t-SNE)
technique [30], that will feed the k-means.

All the computations are performed in R [31] (ver-
sion 3.4.4), using specific packages, such as igraph [32]
for graph generation and calculation of metrics, and
timeSeries [33], fracdiff [34], fGarch [35], and
rugarch [36], for the simulation of some time series models
mentioned below. The simulation of some time series models
required the implementation of the appropriate procedure.

The main idea of this new approach is to show that the
use of complex networks can easily distinguish time series
models from a wide set of different models, showing that
the topological characteristics of the networks corresponding
to the series can capture the global nature of the same. We
also want to show that the joining of the visibility methods
and the quantile methods improves the clustering of the series
in contrast to the use of only one mapping method. This is
our main contribution, since until now no other paper joins
different concepts of network mapping.

A. Dataset

In order to apply the proposed approach we decided to
simulate a large set of time series models that are most
common and widely used in the statistical theory and practice
of time series analysis. We generate, using R software and
appropriate packages, 100 sample of size T = 10000 of each
of the 10 models previously presented (subsection II-A), in a
total of 1000 time series.

We refer to these models as follows:
• White noise: only White Noise;
• AR models: AR(1)-0.5, AR(1)0.5 for AR(1) pro-

cesses with parameters φ1 ∈ {−0.5, 0.5}; and AR(2) for
AR(2) process;

• ARIMA models: only ARIMA(1,1,0);
• ARFIMA models: ARFIMA(1,0.4,0)-0.5,
ARFIMA(1,0.4,0)0.5 for ARFIMA(1, 0.4, 0)
processes with parameters φ1 ∈ {−0.5, 0.5};

• SETAR models: only SETAR(1);
• INAR models: only INAR(1);
• GARCH models: only GARCH(1,1).
The time series are then mapped into networks using the

NVG, HVG and 50-QG methods. The resulting 3000 (1000∗3)
networks are characterized by the topological metrics. We
obtain a data frame of 15 variables (features) and 1000
instances.

B. Results

We performed 7 types of clustering analysis, using 7 dif-
ferent feature vectors, namely, the metrics of only one of the
mapping methods (3 different vectors), two to two metrics
of the mapping methods (3 different vectors), and finally,
a vector containing all the metrics obtained from the three
different mapping methods, and we compared the results with
the true classification, (the original time series models), using
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Mappings Adjusted Average
Rand Index Silhouette

NVG 0.36 0.51
HVG 0.63 0.66
Q50 0.64 0.73
NVG-HVG 0.68 0.63
NVG-Q50 0.78 0.75
HVG-Q50 0.79 0.73
NVG-HVG-Q50 0.80 0.73

TABLE I: Clustering evaluation metrics for the different
clustering analysis. The results refer to the evaluation metrics
for the dataset.

the clustering evaluation metrics mentioned earlier, in order
to support our assertion that using two different concepts of
mapping methods is an advantage for better recognition of
network characteristics (and time series inevitably).

We divide this results into two parts: the results obtained
from the principal components analysis (as a dimensionality
reduction technique) and then the results obtained from the
clustering analysis (using k-means algorithm and knowing a
priori the correct number of clusters in the dataset, that is,
k = 10).

To evaluate the results of clustering, we chose two evalu-
ation metrics, namely, adjusted Rand index [37] and average
silhouette. The two measures have different functions, the first
is a measurement of the accuracy of the results: compares the
clusters obtained with the true clusters. The second measures
the quality of clusters obtained without knowledge of the true
clusters. Adjusted Rand index takes values between −1 and 1.
It is negative if the index is less than the expected index. Its
expected value is 0 in the case of random clusters. A larger
Adjusted Rand Index means a higher agreement between two
partitions. And the average silhouette takes values between
−1 and 1, where a high value indicates that the object is well
compatible with its own cluster but not with neighbor clusters.
If most objects have a high value, the cluster configuration is
appropriate.

The results of the clustering evaluation metrics we choose
(adjusted Rand index and average silhouette) obtained for the
different combinations of feature vectors are presented in the
table I, columns 2 and 3, respectively.

The colors represent the two maximum values of the cor-
responding column, with the darker color highlighting the
maximum value and the lighter color the second maximum
value.

We can observe that the feature vector that is closest to
the real clusters is the one corresponding to the junction of
the three proposed mapping methods, (NVG, HVG and 100-
QG), with a value of 0.80 in a range of [−1, 1]. The vectors
that obtained the best values (0.75 and 0.73, in a range of
[−1, 1]) of the average silhouette are the vectors corresponding
to the metrics of the graphs obtained by the two concepts of
mapping together. We thus show that the best results are those
that use in the dataset the two types of time series mapping
concepts in networks (concept of visibility and concept of
probabilities of transition). Thus, we prove that the addition

of more information about the data do translate into a better
result, as we expected. This evidence is further reinforced by
the fact that the combination of the two visibility methods
yields (NVG and HVG) 0.68 for adjusted Rand index, which
is much lower than the best results obtained (0.80, 0.79 and
0.78) that correspond to the vectors obtained from the visibility
and quantile methods.

If we focus on feature vector corresponding to just one
type of mapping, we note that the that best capture the
characteristics of the time series are the 50-QGs with an
adjusted Rand index of 0.64 compared to the NVG and HVG
that obtained 0.36 and 0.63, respectively, and the average
silhouette value is the highest (0.64). This is in agreement
with the expected one, since this method better captures the
variability of the observations of the time series. And the
visibility of methods capture more global structural properties
of time series.

Let us now analyze in more detail some results obtained.
First we will analyze the results obtained by the PCA corre-
sponding to the characteristic vector using the three mappings
(the best value of adjusted Rand index). And then we will
analyze the results of clusters obtained for this vector.

1) PCA Results: Figure 4 represent the biplot obtained by
the PCA for the feature vector that obtained the best adjusted
Rand index.

k_NVG

d_NVG

S_NVG

C_NVG

Q_NVG

k_HVG d_HVG

S_HVG

C_HVG Q_HVG

k_Q50

d_Q50

S_Q50

C_Q50

Q_Q50

−1

0

1

−2.5 −2.0 −1.5 −1.0 −0.5 0.0
Dim1 (86.1%)

D
im

2 
(6

.8
%

)

Models

AR(1) −0.5

AR(1) 0.5

AR(2)

ARFIMA(1,0.4,0) −0.5

ARFIMA(1,0.4,0) 0.5

ARIMA(1,1,0)

GARCH(1,1)

INAR(1)

SETAR(1)

White Noise

Contrib

5

10

15

20

5

10

15

20

Contrib

PCA − Biplot

Fig. 4: Results of the PCA analysis. Objects belonging to
different groups have different colors, and the arrows represent
the contributions of the features to the PCs (the larger the size,
sharpness, and closer to orange the greater the contribution of
the feature).

We can start by noting that several of the objects belonging
to different classes are actually separated into clusters in this
bidimensional space, showing that most of the networks are
first grouped correctly using the two principal components.

We can also verify that the apparently more dissimilar
objects are those corresponding to models with specific charac-
teristics such as trend (ARIMA(1,1,0)), periodicity (AR(2)
and ARFIMA(1,0.4,0)0.5), counting (INAR(1)), and
regime changes (SETAR(1)). On the other hand there is a
greater difficulty in distinguishing the networks correspond-
ing to the ARFIMA(1,0.4,0)-0.5, White Noise and
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GARCH(1,1) models, which are processes that are somewhat
similar, mainly the last two, and therefore expected.

We can still verify that, just as the arrows in the plot
themselves suggest, different topological metrics of the three
mapping methods contribute to distinguish different time series
models. The d̄ and C of Q50, k̄ of NVG, and C of NVG and
HVG, contribute to distinguish second PC, that is, INAR(1),
ARIMA(1,1,0), AR(2), and ARFIMA(1,0.4,0)0.5
models. The C and Q of NVG, k̄ and C of HVG, and C
of 50-QG, contribute to distinguish first PC, that is, AR(2),
ARFIMA(1,0.4,0)0.5, AR(1)0.5, ARIMA(1,1) and
INAR(1).

2) Custer Results: In figure 5 we present an enhanced jitter
strip chart, where the width of the jitter is controlled by the
density distribution of the data within each class. We can see
an almost perfect attribution of the objects by the different
clusters, with the exception are ARFIMA(1,0.4,0)-0.5,
GARCH(1,1) and White Noise networks which are not
distinguishable and are assigned to the same clusters. We
conclude that these are the most similar models from the
point of view of the complex networks, and consequently more
difficult to distinguish, that in the perspective of the analysis
of time series have very similar characteristics.

2.5

5.0

7.5

10.0

AR(1
) −

0.
5

AR(1
) 0

.5

AR(2
)

ARFI
M

A(1
,0

.4
,0

) −
0.

5
ARFI

M
A(1

,0
.4

,0
) 0

.5
ARIM

A(1
,1

,0
)

G
ARCH(1

,1
)

IN
AR(1

)

SETA
R(1

)

W
hi

te
 N

oi
se

Model

C
lu

st
er

Cluster Analysis

Fig. 5: Plot the distribution of the objects corresponding to the
time series models by the different clusters.

As we specify a priori in the algorithm k-means that the
number of clusters is 11, the algorithm ”divides” these three
models into three different clusters. But we can see from
the breadth of the traces that this distribution is not uniform,
this emphasizes a possible ”capacity” to distinguish, mainly,
the ARFIMA(1,0.4,0)-0.5 and White Noise models,
which are mostly distributed by cluster 4 and 10, respectively.

Although there is not a completely perfect assignment by
clusters, we can conclude that it is a good and relevant result.

V. CONCLUSION

Classical approaches to time series analysis present severe
limitations when analyzing sets of time series. A recent and

very promising conceptual approach relies on mapping the
time series to complex networks, where the large set of
network science methodologies can help in grouping time
series.

Our objective with this work is to contribute to the im-
provement of the methods of clustering of time series, using a
complementary area. For this we construct a dataset of 3000
synthetic complex networks, distributed by 10 types of time
series models, and we analyse using data mining tools.

The results show that our approach is able to group almost
all different time series models using a set of basic topological
metrics of complex networks based on different mapping
methods.

The main advantage of the proposed approach is to be a
completely nonparametric method that can serve as a solution
to the parametric and statistical methods of time series analy-
sis. We show that different mappings complement each other,
identifying different characteristics of time series. Results
show the validity and discrimination power, we were able
to distinguish networks corresponding to non-stationary from
stationary time series models, counting from non-counting
time series models, periodic from non-periodic time series
models, and state models from state models time series. More
specifically, out of 10 different network types we can distin-
guish perfectly 7 from them. However, we could not group the
networks corresponding to the ARFIMA(1,0.4,0)-0.5,
GARCH(1,1) and White Noise models into different
clusters, given their very similar characteristics.

In future work, we want to explore new sets of topological
metrics as well as new types of mapping of series for network,
in order to improve our results, more specifically, to be able
to separate perfectly the models that we can not achieve in
this work.
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