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Abstract—The methods proposed in the spatiotemporal 

databases community to represent the continuous evolution of 

real-world phenomena from observations do not consider the 

physical characteristics of the phenomena and the external 

conditions with which they interact. As a result, the 

representation has no real physical meaning, and it is hard to 

establish error estimates and bounds. The finite element 

method approximates the behavior of a phenomenon using 

equations based on laws and principles of physics. It considers 

material properties and external conditions, can handle 

complex geometries, and provides error estimates and bounds. 

It requires some expertise to be used correctly, can be 

expensive, does not seem to be suitable to process large datasets 

of data on the evolution of real-world phenomena, and a 

structural model has to be defined for every problem. It can be 

used to predict unknown states, but its use is somewhat limited 

in the context being proposed. 
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I. BACKGROUNG 

Several technologies exist that can be used to collect data 
on the evolution of real-world phenomena (e.g., sequences of 
satellite images tracking the evolution of icebergs in the 
Antarctic, and video recording the evolution of biological 
tissue). Our goal is to represent the evolution of real-world 
phenomena in-between know observations using moving 
regions [1] (i.e., objects whose position, shape and extent 
change continuously over time) in spatiotemporal database 
management systems (STDBMSs). 

In this context, creating moving regions from snapshots 
(observations) is called the region interpolation problem [2], 
and moving regions are represented using the sliced 
representation [3]. In the sliced representation, a moving 
region is an ordered collection of units. A unit represents the 
evolution of a geometry between a source and a target known 
geometries, during an interval of time. The evolution of a 
geometry within a unit is given by an interpolation function, 
F+, that should have some properties of interest. In 
particular: it should have low complexity and allow the 
processing of large datasets, handle geometries with an 
arbitrary shape and complexity, generate only valid 
intermediate geometries, and provide a good approximation 
of the evolution of the phenomena, ideally with a known 
error (providing error estimates and bounds), that can be 
used in applied scientific work (e.g., to perform numerical 
analysis on the evolution of real-world phenomena). 

In [4]–[6] the authors discuss the use of relational 
database management systems (RDBMSs) as a technology to 
support scientific computing and computer-based 
engineering, in particular, to simplify large scale finite 
element analysis (FEA). This approach differs from the 

objective (context) presented in this paper (e.g., in this paper, 
FEA is considered as a method that can potentially be used to 
create moving regions that will be used to implement 
operations to study the evolution of phenomena, and the 
relationships that they establish with other objects and 
phenomena, over time). The objective is not to use 
spatiotemporal databases to support FEA. 

Morphing techniques are used successfully, for example, 
in animation packages and computer graphics. Their main 
goal is to obtain a natural continuous transformation of a 
geometry between two consecutive known geometries and 
can potentially be used to implement F+. Several methods 
have been proposed in the literature (e.g., using: some type 
of decomposition [7], deformation transfer [8], and physical 
principles [9]). However, in general, the physical properties 
of the phenomena being represented and the external 
conditions with which they interact, that can have an impact 
on their evolution, are not considered, and no guarantees on 
the global and local distortions introduced by the methods 
are given. As a consequence, it is hard to evaluate the quality 
of the interpolation objectively and establish an 
approximation error w.r.t. the actual evolution of the 
phenomena. 

Engineering analysis and computational science 
simulation are used successfully in many fields (e.g., in 
structural analysis and fluid flow prediction). They can 
simulate the physical properties of materials and their 
interaction with external conditions, predict how a 
phenomenon will evolve in the future, and provide error 
estimates and bounds. Therefore, this paper presents a 
critical overview of the use of the finite element method 
(FEM) in the context of the region interpolation problem. 
This should also serve as a reference when considering the 
use of other numerical methods in the same context.  

This paper is organized as follows. Section II presents 
and characterizes the finite element method. Section III 
presents an overview on the use of the finite element method 
in the context of the region interpolation problem. Section IV 
presents a discussion on the main advantages, disadvantages, 
and challenges of using the finite element method in the new 
context, taking as a reference the properties defined in 
Section I for an ideal interpolation function F+. Section V 
presents the conclusions and future work. 

II. THE FINITE ELEMENT METHOD 

A number of important problems found in nature can be 
described using partial differential equations (PDEs). Some 
have no known analytical solution, or if an analytical 
solution is known, it is not practical to use it. In these 
situations, numerical methods (e.g., the finite element 
method (FEM), the boundary element method (BEM), the 
finite difference method (FDM), the finite volume method 
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(FVM), and the meshless method) can be used to solve these 
problems. Because each method has different variations, 
choosing the best method to be used is application 
dependent. For example, FEM is a very general method, with 
a solid mathematical foundation, widely used in continuum 
mechanics and structural analysis. FVM is preferred in 
computational fluid dynamics (CFD). It is a conservative 
method (e.g., it ensures the conservation of mass, momentum 
and energy at each element of the discretization) widely used 
to solve models based on conservation laws. It is also 
becoming common to encounter situations in which different 
methods are combined to solve a particular problem. 

Several types of analysis can be performed (e.g., static, 
dynamic, linear, and nonlinear). Most real-world phenomena 
are dynamic and nonlinear in nature. For example, time-
dependent (transient) analysis can be used to determine the 
dynamic response of a structure at different time steps. 
Nonlinearities include geometric, material, and contact 
nonlinearities [10] (e.g., large deformations, plasticity, 
material damage or fracture, and hyper-elasticity). Analysis 
(e.g., FEA) can be used to understand and predict the 
behavior, and optimize and control the design and operation, 
of structures subjected to static or dynamic loads. 

Numerical methods have potential applications in several 
areas [10], and various packages are available to perform 
numerical analysis on physical phenomena. 

FEM [10], [11] is used in engineering as well as in pure 
and applied sciences (e.g., in continuum mechanics and 
structural engineering) and it has potential applications in 
several areas (e.g., geomechanics, biomechanics, and 
environmental engineering). It is a powerful procedure for 
the analysis of structures with arbitrary geometry and general 
material properties, subjected to different types of loads. It 
can approximate the behavior of a physical (real) system in 
space and time (e.g., compute the displacements, stresses and 
strains in a structure under a load). Its main goal is to 
simulate (predict) with a high degree of accuracy the 
evolution (behavior) of a phenomenon or structure under 
certain conditions, using equations that follow established 
laws and principles of physics, giving error estimates and 
bounds on the quality of the solution [10]. Various FEM 
methods and variations have been proposed in the literature 
(e.g., the extended (XFEM) and the smoothed (S-FEM) finite 
element methods). 

In FEM, a system is divided into a finite number of 
individual well-defined elements or components whose 
behavior, specified by a finite number of parameters, can be 
understood. These simple elements may have physical 
properties. Then, the solution of the system is given by the 
local solutions, computed for each element. The quality, 
validity, and accuracy of the solution depends on the quality 
of the discretization. In general, geometries with finer 
elements improve the quality of the simulation (e.g., local 
displacements and stresses can be captured in greater detail). 
The precision of the solution, and the efficiency of the 
method can be improved by choosing an appropriate element 
type for the discretization. It can be advantageous to use 
more than one element type to discretize a problem. 

In general, FEM solves an equation of the form r = Ku, 
where r is a vector of known values (e.g., loads) K is a 
matrix of known values representing, for example, stiffness, 
and u are the unknowns at the nodes of the discretization 

(e.g., the nodal displacements). Boundary conditions and 
constraints can also be specified (e.g., known displacements).  

A. Classification of a Problem 

In order to select an appropriate structural model and 
computational method for solving a specific problem [10] the 
following should be considered: 

• Identify the relevant physical phenomena influencing 
the structure being studied, the nature of the problem, 
the material properties and the differential equations 
governing the phenomenon. 

• Define the level of accuracy desired, and the variables 
being studied. 

The choices made during this phase are extremely 
important and can have an impact on the accuracy and 
validity of the results obtained by the simulation [10]. In 
general, the following steps need to be defined when using 
FEM: 

• Step 1. Select a structural model. This includes 
choosing an appropriate mathematical model 
representing the physical problem being studied (e.g., 
specifying material properties and constraints). Two 
important properties of an appropriate mathematical 
problem are effectiveness and reliability [10]. 

• Step 2. Select a discretization. Create nodes and 
elements and define boundary conditions and loads. 
As discussed previously, the accuracy of the analysis 
depends on the discretization. 

• Step 3. Compute the stiffness matrix (Ki) and the load 
vector for each element. The stiffness matrix 
represents the relationship between the loads and the 
displacements at each node in an element. 

• Step 4. Assemble the global stiffness matrix (K) and 
load vector, compute the unknown displacements, the 
reactions, and the strains and the stresses for each 
element. Direct and iterative solvers are available, 
and the choice on which one to use depends on the 
problem. 

• Step 5. Analyze the results, also known as the 
postprocessing step (e.g., analyze the displacements, 
the stresses and the strains). This step is crucial. The 
results of a simulation should always be checked. 

B. Error Recovery and Estimates 

Computational methods are applied to conceptual models 
of reality, and therefore can only compute approximate 
solutions. The main sources of error [10] are the model and 
the discretization. Strategies to minimize the error include 
improving the conceptual and the structural models and 
using a finer discretization. Because the conceptual and the 
structural models are in general not perfect, the simulation 
cannot reproduce exactly the real phenomenon even in a 
situation where the error is zero. In some problems, round-
off errors introduced by finite precision arithmetic in 
computers can be significant. Several methods to estimate 
and reduce the error of a solution have been proposed (e.g., a 
posteriori error estimators and adaptive analysis procedures 
[12]). FEM provides error estimates and bounds that allow 
the use of adaptative self-correcting procedures. 
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C. Solving Simultaneous Algebraic Equations 

A system of simultaneous linear algebraic equations can 
be solved using direct (elimination methods) and iterative or 
approximate methods. Iterative methods (e.g., the Gauss-
Seidel method) are best suited to solve very large systems of 
equations, in general, avoid round-off errors, and can have 
convergence problems. Elimination techniques (e.g., Gauss 
elimination and the Cholesky factorization) can have round-
off errors, and difficulties handling ill-conditioned systems 
that can lead to bad solutions or singularity [13]. 

A comparison between the Gauss-Seidel and the Gauss 
elimination methods, commonly used in practice, can be 
made to have an idea about the algorithmic complexity of 
these methods. For solving a system of n linear equations, 
the Gauss-Seidel method performs n divisions, n2 
multiplications, and n2 – n additions in each iteration, the 
Gauss elimination method uses n divisions, (1/3)n3 + n2 
multiplications, and (1/3)n3 + n additions [14]. Other 
elimination and iterative methods are available (e.g., see 
[13], [14]). The choice of the method to be used depends on 
the problem being solved. 

D. Time-Dependent Analysis 

When working with time-dependent problems in 
dynamic analysis, procedures are required to perform 
numerical integration in time. In the case of nonlinear 
dynamic analysis, time integration algorithms can be implicit 
or explicit [14], [10]. Implicit algorithms satisfy equilibrium 
conditions at each increment (time step) and are said to be 
unconditionally stable. Explicit algorithms do not satisfy 
equilibrium conditions at each time step and are said to be 
conditionally stable. As a consequence, errors may be 
amplified during analysis. In order to satisfy equilibrium 
conditions, implicit algorithms use iterative methods. This 
makes them more expensive and can cause convergence 
problems but can act as an error correction mechanism. 
Because explicit algorithms are conditionally stable, time 
steps must be small enough to guarantee the accuracy and 
validity of the solution and avoid numerical instability. 
Implicit algorithms impose no limit on the size of the time 
step used but it still has an impact on the accuracy of the 
solution. 

The choice on the approach to be used depends on the 
problem being solved (e.g., explicit algorithms are generally 
used to solve highly nonlinear problems with many degrees 
of freedom [15]). If a suitable time step is chosen both 
techniques converge to an accurate solution. There are also 
situations in which it is advantageous to use both techniques 
for different time steps [15]. 

E. Nonlinear Analysis 

Linear analysis assumes that the shape and the material 
properties of the structure being simulated do not change 
significantly during deformation, displacements are 
infinitesimally small, no gaps or overlaps occur, the nature of 
the boundary conditions remains unchanged, and there is no 
time-dependence (In accordance with the steady state 
assumption [10].). The structure maintains its initial stiffness 
independently of the amount of deformation, stress 
developed in response to the load, and on how the load is 
applied. This assumption simplifies the problem formulation 
and its solution.  

In nonlinear analysis a time-dependent non-steady state is 
assumed, and equilibrium must be achieved at all time steps. 
For example, assuming large displacements, rotations, and 
strains, for a body in motion, its volume, surface area, mass 
density, stresses, and strains can change continuously over 
time. Nonlinear problems are solved using iterative methods. 
This type of analysis does not always converge, and it is 
sensitive to small variations (perturbations) in the data. This 
makes it more complex and expensive. Some phenomena can 
only be simulated using nonlinear analysis, and some 
expertise is required to ensure the accuracy and the validity 
of the results. Nonlinear analysis allows the study of, for 
example, structural response to extreme events, performance 
under limit conditions and failure, impacts and large 
deformations, and phenomena that evolve dynamically. 
Sources of nonlinearities include [10]: 

• Nonlinear geometry. Stiffness changes only due to 
changes in the shape of the geometry. 

• Nonlinear material. Stiffness changes due to changes 
in the material properties during the analysis. Linear 
material models assume that stress is proportional to 
strain and that the model will return to its original 
shape once the load has been removed (i.e., no 
permanent deformations occur). 

• Loss of elastic stability (buckling). Stiffness changes 
due to the applied loads. Nonlinear analysis can 
explain the post-buckling behavior of the structure 
(e.g., if it collapses or is still able to support the load 
after buckling). 

• Contact stresses and nonlinear supports. Support 
conditions and contact stresses change during the 
application of the loads. 

If large displacements, rotations, and strains occur, 
nonlinear analysis should be used. A problem can exhibit 
more than one type of nonlinear behavior [11]. Nonlinear 
analysis can be used if the nonlinear material properties of 
the structure being studied are known. 

III. USING THE FINITE ELEMENT METHOD IN THE CONTEXT OF 

SPATIOTEMPORAL DATABASES 

Several types of analysis can be performed, each with its 
own advantages, disadvantages, and limitations, and there 
are situations in which it is advantageous to use more than 
one type of analysis to solve a problem. For example, when 
analyzing the evolution of icebergs, situations with: a) large 
displacements, rotations, and strains, b) small displacements 
and strains, and large rotations, and c) small displacements, 
rotations, and strains may be encountered. That is, we can 
potentially use different types of analysis and methods to 
study the evolution of a phenomenon. It is impractical to 
analyze the use of all possible types of analysis and FEM 
methods proposed in the literature. Therefore, the use of a 
general formulation, called the displacement-based finite 
element method [10] (based on the principle of virtual work), 
for the analysis of solids and structures is considered in the 
remainder of this section. The following is also considered: 

• We are not interested in a full analysis (We are 
interested, in particular, in the displacements: 
translation and rotation, at the nodes.). This can 
simplify the analysis. 
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• FEM cannot be directly applied to the region 
interpolation problem because it cannot interpolate a 
geometry between two known geometries. It can 
however predict unknown states. 

• Problems solved using FEM can have millions of 
degrees of freedom. This is not expected to occur in 
the context of spatiotemporal databases, for most 
problems. 

• Meshes, matrices, vectors, and functions can be 
stored in a spatiotemporal database extension (e.g., 
for PostgreSQL) using abstract data types (ADTs). 
This includes, for example, the discretization, the 
stiffness matrix, the loads and the boundary 
conditions. 

• In FEM, some boundary conditions must be set so 
that the system of equations to be solved has a unique 
solution (e.g., some displacements must be known). 

• Each node in the discretization has at most three 
degrees of freedom: rotation, and translation in x and 
y. 

• The use of optimized procedures is not considered, 
and in FEM terms, a few seconds can be considered a 
considerable amount of time. 

In the simplest case, the governing equilibrium equations 
(corresponding to the nodal point displacements) for the 
static analysis of structures and solids, assuming linearity and 
n degrees of freedom, are given by [10]: 

  Ku = r, (1) 

  Ku(t) = r(t), (2) 

where r is a vector of known loads or forces, K is the 
stiffness matrix, u are the unknown nodal point 
displacements, and t represents time. r, u, and K are 
assembled from individual re

i, ue
i, and Ke

i for each element i 
of the discretization. In (2) the displacements can be 
evaluated at any time t independently of the displacement 
and loading history. This is not the case in dynamic analysis 
[10]. Equations (1) and (2) can be solved using direct and 
iterative methods [10]. Iterative methods are usually used to 
solve very large systems of equations. In our context we 
assume n is much smaller than 1 million, therefore, we can 
use direct methods in most cases. Under the linear analysis 
assumption, K is constant. Therefore, r or r(t), and K or a 
factorization of K can be stored in the database and retrieved 
when necessary to compute u or u(t) at time t. 

In the case of dynamic analysis, assuming linearity, the 
dynamic equilibrium equation has a characteristic form [10], 
[12] as in: 

 Mü + Cu̇ + Ku = r, (3) 

where u = u(t) are the unknown nodal displacements, t 
represents time, M is the mass matrix, C is the damping 
matrix, K is the stiffness matrix, r is a vector of known loads 
or forces, and ü and u̇ are the nodal acceleration and velocity 
vectors, respectively. C is neglected in some types of 

dynamic analysis. Equation (3) can be solved using direct 
integration and mode superposition methods [10]. 

 For example, if using an implicit integration method to 
solve (3) (e.g., the Newmark integration method that is 
unconditionally stable), with constant mass, time step, and 
material properties, and no damping, the displacements in the 
next time step (t + ∆t) are computed using information about 
previous time steps. M, K, r, the initial conditions 0u̇, and 0ü, 
the integration constants, and a factorization Ǩ = K + a0M + 
a1C (where a0 and a1 are integration constants) can be stored 
in the database. Then, at each time step 1) the effective loads 
(t + ∆tr+) are computed, 2) the system of equations Ǩ t + ∆tu = t + 

∆tr+ is solved for t + ∆tu, and 3) t + ∆tü is computed. Whether or 
not some components can be computed once and stored in 
the database depends on the method used to solve (3), and 
how the problem is defined. 

In the case of nonlinear analysis, using an updated 
Lagrangian formulation based on the principle of virtual 
work for general nonlinear analysis, assuming large 
displacements, rotations and strains (the area and the volume 
of the geometry change continuously), no nonlinearities in 
the boundary conditions, a negligible damping effect, 
displacement degrees of freedom only, and deformation-
independent loads, the governing equilibrium equations are 
given by [10]: 

 (tKL + tKLN)u = t + ∆tr - tf, (4) 

 Mt + ∆tü + (tKL + tKLN)u = t + ∆tr - tf, (5) 

 Mtü = tr - tf, (6) 

for a static analysis (4), a dynamic analysis using implicit 
time integration (5), and a dynamic analysis using explicit 
time integration (6). Where tKL and tKLN are the linear and 
nonlinear strain incremental stiffness matrices at time t, tr 
and t + ∆tr are the vectors of the external applied point loads at 
times t and t + ∆t, tf is a vector of nodal point forces 
equivalent to the element stresses at time t, M is a time-
dependent mass matrix, u is a vector of increments in the 
nodal point displacements, and tü and t + ∆tü are vectors of 
nodal point accelerations at times t and t + ∆t. 

Nonlinear problems are solved iteratively for each time 
step. The iteration process starts with some initial known 
values from a previous time step. Which components can be 
stored in the database depends on the method used to solve 
the problem (e.g., implicit or explicit integration) and the 
characteristics of the problem (e.g., are the external loads 
deformation-independent?). Since the solution at a time step t 
depends on the solution of previous time steps, some 
precomputed time steps can be stored in the database to 
accelerate computation. 

IV. DISCUSSION 

This section discusses the advantages and disadvantages 
of using FEM, and numerical methods in general, in the 
context of spatiotemporal databases, having as a reference 
the properties defined in Section I for an ideal interpolation 
function F+. 
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The main advantages of using numerical methods include 
the following. Numerical methods: 

• Can handle a variety of problems (e.g., fluids, and 
systems with complex geometries and interconnected 
components), provide useful error estimates and 
bounds, and error recovery strategies are known and 
can be used. 

• Solve equations based on established laws and 
principles of physics (i.e., consider the physical 
properties of materials and the external conditions 
with which they interact, that can have an impact on 
their evolution). 

• Can approximate the behavior of real-world 
phenomena with a high accuracy and predict 
unknown states. 

The main disadvantages of using numerical methods 
include the following: 

• Parameter values may have to be provided by the user 
(i.e., the process in general is not automatic), and the 
values chosen can have a significant impact in the 
accuracy and validity of the results. 

• The most appropriate type of element to be used 
depends on the problem, and hybrid meshes can 
obtain better results in some situations. The ideal 
discretization depends on the problem and on what is 
being analyzed. 

• Some problems can only be solved using iterative 
methods (e.g., nonlinear problems) which makes 
them more expensive. Nonlinearity is abundant in the 
physical world. 

• In time-dependent problems the integration time step 
chosen can have a significant impact on the accuracy 
and validity of the analysis. Guidelines exist to find 
an optimum time step. In general, the shorter the time 
step the greater the accuracy. In some types of 
analysis, the solution for an arbitrary time step t 
depends on solutions from previous steps. For 
example, given a phenomenon evolving for 20 
seconds. If we want to know its state at time step t = 
15s, assuming that the state at t = 0s is known, we can 
compute for t = 15s directly from t = 0s with more or 
less impact on the accuracy and validity of the 
solution. If, for example, the optimum time step for 
the problem is 1s, then we would have to compute for 
t = 1s, 2s, 3s, …, 15s. It seems reasonable that the 
optimum time step should be used. A possible 
solution for this limitation is to precompute and store 
intermediate states in the database. 

• An improper choice of a structural model, using an 
inappropriate numerical procedure, or type of 
analysis, for example, can lead to “improperly 
posed”, inaccurate or invalid solutions, that may be so 
subtle that cannot be perceived by a nonexpert. 
Therefore, some level of expertise is required. For 
exemple, nonlinear analysis requires a significant 
amount of expertise. 

• The time spent in the pre-processing and post-
processing steps of complex problems can largely 
exceed the time needed to compute a solution. These 

steps, in general, require user intervention. In the 
context of spatiotemporal databases, automatic 
processes are preferred. 

• FEM cannot interpolate a geometry between two 
known states (i.e., it cannot be used directly in the 
context of the region interpolation problem). 

• Unless a mathematical model is known for a problem 
and material being analyzed, one has to be 
constructed which is not a trivial task. This can limit 
the use of FEM to specific problems and types of 
materials. In general, the analysis is problem-
dependent. 

• Overall, FEM does not seem to be suitable to process 
large datasets of data on the evolution of real-world 
phenomena, possibly involving nonlinearities. 

V. CONCLUSION AND FUTURE WORK 

The finite element method is a powerful tool, and care 
and some level of expertise are needed to use it properly. For 
every problem a structural model must be defined, which is 
not a trivial task. It provides error estimates and bounds, and 
error recovery strategies can be used. It considers the 
material properties of the phenomena and the external 
conditions with which they interact and that can have an 
impact on their evolution. In some situations, the time step 
used for analysis can have an impact on the accuracy and 
validity of the solution, and arbitrary time step displacements 
are computed using information from previous known (or 
computed) time steps displacements.  

It is important to note however that in the context of 
spatiotemporal databases, we are interested on the evolution 
(changes) of the nodal displacements (i.e., the translation and 
rotation of the nodes of the geometry representing the 
phenomenon) over time, not on a full analysis, and a 
relatively small number of degrees of freedom (much less 
than 1 million) are expected to be found in most of the 
problems being solved. This can simplify or make a finite 
element analysis less expensive. On the other hand, 
situations with large displacements, rotations, and strains, 
and nonlinearities are expected to be encountered, and most 
problems are time-dependent. The goal is not to use 
spatiotemporal databases as a data management technology 
to support the finite element method. 

The finite element method can be used in the context of 
spatiotemporal databases to predict unknown states of real-
world phenomena. However, it cannot be used directly to 
interpolate a geometry between a source and a target known 
geometries. It can handle complex geometries, but its use is 
limited to problems and materials for which a mathematical 
model is known. It provides error estimates and bounds, can 
simulate the behavior of a phenomenon with high precision, 
and the level of accuracy can be adapted to the needs of the 
user. Overall, it does not seem to be suitable to process large 
datasets of data on the evolution of real-world phenomena, 
possibly involving nonlinearities. It requires input from the 
user, some level of expertise, and the results should always 
be interpreted and analyzed with care. 

As is, the finite element method can be used in specific 
situations, but it does not provide a solution for the problem 
that we want to solve in the context of spatiotemporal 
databases. A possible line for research is to study how it 
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could be combined with morphing techniques to improve the 
interpolation quality of the latter and how it could be used to 
create a ground truth. Some interesting questions are raised 
for future work and investigation on this subject: 

• Study how morphing and numerical methods can be 
used together (e.g., to improve the quality of 
morphing techniques). 

• Study the use of meshless methods. These methods 
avoid some of the problems associated with the use of 
a discretization. 

• Create moving regions for a use case using the finite 
element method and study its performance and the 
quality of the representation.  
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